首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanical properties of aligned long harakeke fibre reinforced epoxy with different fibre contents were evaluated. Addition of fibre was found to enhance tensile properties of epoxy; tensile strength and Young’s modulus increased with increasing content of harakeke fibre up to 223 MPa at a fibre content of 55 wt% and 17 GPa at a fibre content of 63 wt%, respectively. The flexural strength and flexural modulus increased to a maximum of 223 MPa and 14 GPa, respectively, as the fibre content increased up to 49 wt% with no further increase with increased fibre content. The Rule of Mixtures based model for estimating tensile strength of aligned long fibre composites was also developed assuming composite failure occurred as a consequence of the fracture of the lowest failure strain fibres taking account porosity of composites. The model was shown to have good accuracy for predicting the strength of aligned long natural fibre composites.  相似文献   

2.
Composites based on short Agave fibres (untreated and alkali treated) reinforced epoxy resin using three different fibre lengths (3 mm, 7 mm and 10 mm length) are prepared by using hand lay up and compression mould technique. The materials were characterized in terms of tensile, compressive, flexural, impact, water absorption properties and machinability behaviour. All mechanical tests showed that alkali treated fibre composites withstand more fracture strain than untreated fibre composites. As evidenced by the dynamic mechanical analysis (DMA) tests, the thermo-mechanical properties of the composite with alkali treated Agave fibre were considerably good as alkali treatment had facilitated more sites of fibre resin interface. The machinability and atomic force microscope (AFM) studies were carried out to analyze the fibre–matrix interaction in untreated and alkali treated Agave fibre–epoxy composites.  相似文献   

3.
Abaca fibers demonstrate enormous potential as reinforcing agents in composite materials. In this study, abaca fibers were immersed in 5, 10 or 15 wt.% NaOH solutions for 2 h, and the effects of the alkali treatments on the mechanical characteristics and interfacial adhesion of the fibers in a model abaca fiber/epoxy composite system systematically evaluated. After 5 wt.% NaOH treatment, abaca fibers showed increased crystallinity, tensile strength and Young’s modulus compared to untreated fibers, and also improved interfacial shear strength with an epoxy. Stronger alkali treatments negatively impacted fiber stiffness and suitability for composite applications. Results suggest that mild alkali treatments (e.g. 5 wt.% NaOH for 2 h) are highly beneficial for the manufacture of abaca fiber-reinforced polymer composites.  相似文献   

4.
The objective of this study was to investigate the effect of pectin and hemicellulose removal from hemp fibres on the mechanical properties of hemp fibre/epoxy composites. Pectin removal by EDTA and endo-polygalacturonase (EPG) removed epidermal and parenchyma cells from hemp fibres and improved fibre separation. Hemicellulose removal by NaOH further improved fibre surface cleanliness. Removal of epidermal and parenchyma cells combined with improved fibre separation decreased composite porosity factor. As a result, pectin removal increased composite stiffness and ultimate tensile strength (UTS). Hemicellulose removal increased composite stiffness, but decreased composite UTS due to removal of xyloglucans. In comparison of all fibre treatments, composites with 0.5% EDTA + 0.2% EPG treated fibres had the highest tensile strength of 327 MPa at fibre volume content of 50%. Composites with 0.5% EDTA + 0.2% EPG  10% NaOH treated fibres had the highest stiffness of 43 GPa and the lowest porosity factor of 0.04.  相似文献   

5.
Graphene (GN)-based composite paper containing 10 wt.% cellulose nanowhiskers (CNWs) exhibiting a tensile strength of 31.3 MPa and electrical conductivity of 16 800 S/m was prepared by ultrasonicating commercial GN powders in aqueous CNWs suspension. GN/CNWs freestanding paper was applied to prepare the sandwiched films by dip coating method. The sandwiched films showed enhanced tensile strength by over two times higher than the neat resins. The moduli of the sandwiched films were around 300 times of the pure resins due to the high content of GN/CNWs paper. The glass transition temperature of the sandwiched films increased from 51.2 °C to 57.1 °C for pure epoxy (E888) and SF (E888), and 49.8 °C to 64.8 °C for pure epoxy (650) and SF (650), respectively. The bare conductive GN/CNWs paper was well protected by the epoxy resin coating, which is promising in the application as anti-static materials, electromagnetic interference (EMI) shielding materials.  相似文献   

6.
Composites of polypropylene, substitutable for a given application and reinforced with: Medium Density Fibreboard fibre (MDF) (40 wt%); flax (30 wt%); and glass fibre (20 wt%), were evaluated after 6 injection moulding and extrusion reprocessing cycles. Of the range of tensile, flexural and impact properties examined, MDF composites showed the best mean property retention after reprocessing (87%) compared to flax (72%) and glass (59%). After 1 reprocessing cycle the glass composite had higher tensile strength (56.2 MPa) compared to the MDF composite (44.4) but after 6 cycles the MDF was stronger (35.0 compared to 29.6 MPa for the glass composite). Property reductions were attributed to reduced fibre length. MDF fibres showed the lowest reduction in fibre length between 1 and 6 cycles (39%), compared to glass (51%) and flax (62%). Flax fibres showed greater increases in damage (cell wall dislocations) with reprocessing than was shown by MDF fibres.  相似文献   

7.
Composites based on polystyrene and natural rubber at a ratio of 85/15 were prepared by melt mixing with nylon-6 fibres using an internal mixer. The loading of short nylon-6 fibre, untreated and resorcinol formaldehyde latex (RFL)-treated, was varied from 0 to 3 wt.%. Tensile and flexural test samples were punched out from sheets and tested to study the variation of mechanical and dynamic mechanical properties. The tensile behaviour of the composite has been determined at three different strain rates (4.1 × 10−4 s−1, 2 × 10−3 s−1 and 2 × 10−2 s−1). Both the tensile strength and Young’s modulus of the composite increased with strain rate. The tensile strength, tensile modulus, flexural strength and flexural modulus increased with the increase in fibre content up to 1 wt.%, above which there was a significant deterioration in the properties. The RFL-treated fibre composites showed improved mechanical properties compared to the untreated one. Dynamic mechanical analysis (DMA) showed that the storage modulus of the composite with RFL-treated fibre was better compared to the untreated one. The fibre–matrix morphology of the tensile fractured specimens was studied by scanning electron microscopy (SEM). The results suggested that the RFL treatment of nylon fibre promoted adhesion to the natural rubber phase of the blend, thereby improving the mechanical properties of the composite.  相似文献   

8.
Low viscosity thermoset bio-based resin was synthesised from lactic acid, allyl alcohol and pentaerythritol. The resin was impregnated into cellulosic fibre reinforcement from flax and basalt and then compression moulded at elevated temperature to produce thermoset composites. The mechanical properties of composites were characterised by flexural, tensile and Charpy impact testing whereas the thermal properties were analysed by dynamic mechanical thermal analysis (DMTA) and thermogravimetric analysis (TGA). The results showed a decrease in mechanical properties with increase in fibre load after 40 wt.% for the neat flax composite due to insufficient fibre wetting and an increase in mechanical properties with increase fibre load up to 60 wt.% for the flax/basalt composite. The results of the ageing test showed that the mechanical properties of the composites deteriorate with ageing; however, the flax/basalt composite had better mechanical properties after ageing than the flax composite before ageing.  相似文献   

9.
The prevailing utilisation of light and strong structural materials has led to an increasing demand to engineering industries on developing different types of advanced composites. Thus, the development of simple and low cost woven glass fibre composites with an improvement on their tensile and impact properties is suggested. In this paper, the hybridization of a glass fibre reinforced composite is achieved by using low cost short silk fibres as a medium to enhance its cross-ply strength. The comparison on the tensile and impact properties of the composite reinforced by the short silk fibre (with the content from 0.3 to 0.6 wt%) with a pristine glass fibre composite sample was conducted. Fracture surfaces were analysed by using scanning electron microscopy (SEM). Experimental results indicated that the maximum Young’s modulus and ductility index (DI) of a silk reinforced composite increased by 50% and 75%, respectively as compared with the pristine one. Furthermore, the visual examination on drop-weight test samples proved that the impact resistance of the silk reinforced composite was better than that of the pristine sample as well. According to the results obtained, it was found that the addition of 0.4 wt% short silk fibre into glass fibre composite was shown to be the advisable reinforcement content to achieve better tensile and impact strengths.  相似文献   

10.
In this article, a flax fiber yarn was grafted with nanometer sized TiO2, and the effects on the tensile and bonding properties of the single fibers and unidirectional fiber reinforced epoxy plates were studied. The flax fiber yarn was grafted with nanometer sized TiO2 through immersion in nano-TiO2/KH560 suspensions under sonification. The measured grafting content of the nano-TiO2 ranged from 0.89 wt.% to 7.14 wt.%, dependent on the suspension concentration. With the optimized nano-TiO2 grafting content (∼2.34 wt.%), the tensile strength of the flax fibers and the interfacial shear strength to an epoxy resin were enhanced by 23.1% and 40.5%, respectively. The formation of Si–O–Ti and C–O–Si bonds and the presence of the nano-TiO2 particles on the fiber surfaces contributed to the property enhancements. Unidirectional flax fiber reinforced epoxy composite (Vf = 35.4%) plates prepared manually showed significantly enhanced flexural properties with the grafting of nano-TiO2.  相似文献   

11.
A simple synthetic method for placing a mesoporous silica coating on multi-wall carbon nanotubes (CNTs@MS) was developed to improve the surface compatibility with regard to a polar epoxy matrix. In addition, the mesoporous silica shell with silanol groups on the CNTs provides a platform to attach silane molecules (e.g. 3-glycidoxypropyltrimethoxysilane, GPTMS) that enable the CNTs@MS to be incorporated into the epoxy matrix at a content of up to 20 wt.%. The viscosities of the CNTs@MS- and GPTMS-modified-CNTs@MS–epoxy composites are much lower than that of the CNTs–epoxy, and then the voids in the GPTMS-modified-CNTs@MS–epoxy composites are most significantly reduced. The effects of the CNTs@MS and GPTMS-modified CNTs@MS on the mechanical and thermal properties of the epoxy composite are investigated. The results show that the GPTMS-modified CNTs@MS improved the filler–epoxy matrix interaction, and has better compatibility in epoxy than the CNTs@MS. As the surface compatibility and interaction strength increase in the epoxy matrix, the enhancement in storage modulus, thermal conductivity and reduction in the coefficient of thermal expansion are in the following order: GPTMS-modified CNTs@MS > CNTs@MS  CNTs.  相似文献   

12.
In order to develop high functionality of shape memory materials, the shape memory composites combined with TiNi wire and shape memory epoxy were fabricated, and the mechanical and thermomechanical properties were studied. The results showed that TiNi wire can compensate for the stiffness decrease of SMPs at elevated temperature, and the strength of interface and strength of interface matrix were important to further increase elevated temperature mechanical properties. The recovery stress of composites could be adjusted by changing the pre-strain, and the maximum recovery stress was obtained at 8% which was TiNi wire maximum recoverable strain. The addition of 1 vol% TiNi wire could increase the maximum recovery stress from 1.36 MPa to 4.04 MPa, which was almost 3 times of the matrix and at the same time maintained the rates of shape fixity and shape recovery close to 100%.  相似文献   

13.
The objective of this work was to investigate the use of hydrothermal pre-treatment and enzymatic retting to remove non-cellulosic compounds and thus improve the mechanical properties of hemp fibre/epoxy composites. Hydrothermal pre-treatment at 100 kPa and 121 °C combined with enzymatic retting produced fibres with the highest ultimate tensile strength (UTS) of 780 MPa. Compared to untreated fibres, this combined treatment exhibited a positive effect on the mechanical properties of hemp fibre/epoxy composites, resulting in high quality composites with low porosity factor (αpf) of 0.08. Traditional field retting produced composites with the poorest mechanical properties and the highest αpf of 0.16. Hydrothermal pretreatment at 100 kPa and subsequent enzymatic retting resulted in hemp fibre composites with the highest UTS of 325 MPa, and stiffness of 38 GPa with 50% fibre volume content, which was 31% and 41% higher, respectively, compared to field retted fibres.  相似文献   

14.
This paper presents the development of a low-cost carbon fibre moulding compound using an automated spray deposition process. Directed Fibre Compounding (DFC) is used to produce charge packs directly from low cost carbon fibre tows and liquid epoxy resin. A range of material and process related parameters have been studied to understand their influence on the level of macroscopic charge flow, in an attempt to produce a carbon fibre moulding compound with similar flow characteristics to conventional glass fibre SMCs.Charge packs covering just 40% of the mould can be effectively used to process DFC, without detrimentally affecting void content, fibre distribution and mechanical properties. Tensile stiffness and strength values of 36 GPa and 320 MPa are reported for isotropic materials (100% charge coverage), which increase to 46 GPa and 408 MPa with flow induced alignment (50% charge coverage) at 50% fibre volume fraction.  相似文献   

15.
Carbon nanotube (CNT)/epoxy composite films were successfully developed by a combination of layer-by-layer and vacuum-assisted resin transfer molding methods using directly chemical vapor deposition (CVD)-spun CNT plies. CNT fractions in the composite films were found to be dramatically enhanced as the number of CNT plies increased. The as-prepared CNT/epoxy composite films with 24.4 wt.% CNTs exhibited ~ 10 and ~ 5 times enhancements in their strength and Young's modulus, respectively, and high toughness of up to 6.39 × 103 kJ/m3. Electrical conductivity reached 252.8 S/cm for the 20-ply CNT/epoxy films, which was 20 times higher over those of the CNT/epoxy composites obtained by conventional dispersion methods. This work proposed a route to fabricate high-CNT-fraction CNT/epoxy composites on a large scale. The high toughness of these CNT/epoxy composite films also makes them promising candidates as protective materials.  相似文献   

16.
The harmfulness of ultraviolet (UV) radiation (UVR) to human health and polymer degradation has been the focus recently in all engineering industries. A polymer-based composite filled with nano-ZnO particles can enhance its UV resistibility. It has been found that the use of appropriate amount of nano-ZnO/Isopropyl alcohol solvent to prepare a UV resistant nano-ZnO/glass fibre reinforced epoxy (ZGFRE) composite can effectively block the UV transmission with negligible influence on the crystal structure of its resin system. This paper aims at investigating the interfacial bonding behaviour and UV resistibility of a ZGFRE composite. The solvent effect in relation to the dispersion properties of ZnO in the composite is also discussed. XRD results indicated that 20 wt% Isopropyl alcohol was an effective solvent for filling nano-ZnO particles into an epoxy. SEM examination also showed that the bonding behaviour between glass fibre and matrix was enhanced after filling 20 wt% nano-ZnO particles with 20 wt% Isopropyl alcohol into the composite. Samples filled with 20 wt% nano-ZnO/Isopropyl alcohol and 40 wt% nano-ZnO/Isopropyl alcohol has full absorption of UVA (315–400 nm), UVB (280–315 nm) and a part of UVC (190–280 nm).  相似文献   

17.
《Composites Part A》2005,36(7):995-1003
The results of an investigation of the mechanical performance of injection moulded long glass fibre reinforced polypropylene with a glass fibre content in the range 0–73 wt% are presented. The composite modulus exhibited a linear dependence on fibre content over the full range of the study. Composite strength and impact resistance exhibited a maximum in performance in the 40–50 wt% reinforcement content range. The residual fibre length and fibre orientation in the samples has also been characterised. These parameters were also found to be fibre concentration dependent. Modelling of the composite strength using the measured fibre length and orientation data did enable a maximum in strength to be predicted. However, the position and absolute level of the predicted maximum did not correlate well with the experimental data. Further analysis indicated that deeper investigation of the dependence of the interfacial shear strength and fibre stress at composite failure on the fibre content are required to fully elucidate these results.  相似文献   

18.
《Composites Part A》2002,33(4):559-576
The local microstructure can be altered significantly by various fibre surface modifications, causing property differences between the interphase region and the bulk matrix. By using tapping mode phase imaging and nanoindentation tests based on the atomic force microscope (AFM), a comparative study of the sized fibre surface topography and modulus as well as the local mechanical property variation in the interphase of E-glass fibre reinforced epoxy resin and E-glass fibre reinforced modified polypropylene (PPm) matrix composites was conducted. The phase imaging AFM was found a highly useful tool for probing the interphase with much detailed information. Nanoindentation experiments indicated the chemical interaction during processing caused by a gradient profile in the modulus across the interphase region of γ-aminopropyltriethoxy silane (γ-APS) and polyurethane (PU)-sized glass fibre reinforced epoxy composite. The interphase with γ-APS/PU sizing is much softer than the PPm matrix, while the interphase with the γ-APS/PP sizing is apparently harder than the matrix, in which the modulus was constant and independent of distance away from the fibre surface. The interphase thickness varied between less than 100 and ≈300 nm depending on the type of sizing and matrix materials. Based on a careful analysis of ‘boundary effect’, nanoindentation with sufficient small indentation force was found to enable measuring of actual interphase properties within 100 nm region close to the fibre surface. Special emphasis is placed on the effects of interphase modulus on mechanical properties and fracture behaviour. The interphase with higher modulus and transcrystalline microstructure provided simultaneous increase in the tensile strength and the impact toughness of the composites.  相似文献   

19.
The cryogenic interlaminar shear strength (ILSS) at cryogenic temperature (77 K) of glass fabric (GF)/epoxy composites is investigated as a function of the graphene oxide (GO) weight fraction from 0.05 to 0.50 wt% relative to epoxy. For the purpose of comparison, the ILSS of the GF/epoxy composites is also examined at room temperature (RT, 298 K). The results show that the cryogenic ILSS is greatly improved by about 32.1% and the RT ILSS is enhanced by about 32.7% by the GO addition at an appropriate content of 0.3 wt% relative to epoxy. In addition, the ILSS of the composite at 77 K is much higher than that at RT due to the relatively strong interfacial GF/epoxy adhesion at 77 K compared to the RT case.  相似文献   

20.
The fracture toughness associated with the fibre compressive failure was obtained from testing notched unidirectional carbon/epoxy four-point-bend specimens. Microscopy of failed specimens revealed that onset of damage was characterised by the formation of a single line of fibre breaks at approximately 45° to the plane of the initial notch. A micromechanical finite element model was used to investigate this failure scenario and it was concluded that the most probable cause of the damage morphology was compression-induced shear failure of the composite. An intrinsic material property in this case was deemed to be the mode II critical strain energy release rate associated with the initiation of the 45° crack. For IM7/8552, this was measured to be GIIc = 4.5 ± 0.8 kJ/m2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号