首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The importance of the hydrodearomatisation (HDA) is increasing together with tightening legislation of fuel quality and exhaust emissions. The present study focuses on hydrogenation (HYD) kinetics of the model aromatic compound naphthalene, found in typical diesel fraction, in n-hexadecane over a NiMo (nickel molybdenum), Ni (nickel) and Ru (ruthenium) supported on trilobe alumina (Al2O3) catalysts. Kinetic reaction expressions based on the mechanistic Langmuir–Hinshelwood (L–H) model were derived and tested by regressing the experimental data that translated the effect of both naphthalene and hydrogen concentration at a constant temperature (523.15 and 573.15 K over the NiMo catalyst and at 373.15 K over the Ni and Ru/Al2O3 catalysts) on the initial reaction rate. The L–H equation, giving an adequate fit to the experimental data with physically meaningful parameters, suggested a competitive adsorption between hydrogen and naphthalene over the presulphided NiMo catalyst and a non-competitive adsorption between these two reactants over the prereduced Ni and Ru/Al2O3 catalysts. In addition, the adsorption constant values indicated that the prereduced Ru catalyst was a much more active catalyst towards naphthalene HYD than the prereduced Ni/Al2O3 or the presulphided NiMo/Al2O3 catalyst.  相似文献   

2.
钌基氨合成催化剂氢氮吸附性能的研究   总被引:1,自引:0,他引:1  
The effects of promoters K, Ba, Sm on the chemisorption and desorption of hydrogen and nitrogen, dispersion of metallic Ru and catalytic activity of active carbon (AC) supported ruthenium catalyst for ammonia synthesis have been studied by means of pulse chromatography, temperature-programmed desorption, and activity test. Promoters K, Ba and Sm increased the activity of Ru/AC catalysts for ammonia synthesis significantly, and particularly, potassium exhibited the best promotion on the activity because of the strong electronic donation to metallic Ru. Much higher activity can be obtained for Ru/AC catalyst with binary or triple promoters. The activity of Ru/AC catalyst is dependent on the adsorption of hydrogen and nitrogen. The high activity of catalyst could be ascribed to strong dissociation of nitrogen on the catalyst surface. Strong adsorption of hydrogen would inhibit the adsorption of nitrogen, resulted in decrease of the catalytic activity. Ru/AC catalyst promoted by Sm2O3 shows the best dispers  相似文献   

3.
The effects of promoters K, Ba, Sm on the resistance to carbon-methanation and catalytic activity of ruthenium supported on active carbon (Ru/AC) for ammonia synthesis have been studied by means of TG-DTG (thermalgravity-differential thermalgravity), temperature-programmed desorption, and activity test. Promoters Ba,K, and Sm increased the activity of Ru/AC catalysts for ammonia synthesis significantly. Much higher activity can be reached for Ru/AC catalyst with bi- or tri-promoters. Indeed, the triply promoted catalyst showed the highest activity, coupled to a surprisingly high resistance to methanation. The ability of resistance of promoter to methanation of Ru/AC catalyst is dependent on the adsorption intensity of hydrogen. The strong adsorption of hydrogen would enhance methanation and impact the adsorption of nitrogen, which results in the decrease of catalytic activity.  相似文献   

4.
The effects of alkali addition (e.g. Li, Na, K) on the behavior of Ni/MgO catalyst in the bio-ethanol steam reforming have been investigated. Li and Na promote the NiO reduction but negatively affect the dispersion of the Ni/MgO catalyst, whereas K does not significantly affect either morphology or dispersion. Li and K enhance the stability of Ni/MgO mainly by depressing Ni sintering. Coke formation on bare and doped catalysts occurs but with orders of magnitude lower rates than those claimed for Ni supported on an acidic carrier. The peculiar influence of the mean Ni particle size on the turnover frequency (TOF s−1) has been explained by invoking a structure-sensitive character of the ethanol dehydrogenation reaction considered as being the first step of the reaction which evolves according to the following mechanism: ethanol hydrogenation → acetaldehyde decomposition → steam reforming of methane and water gas shift reactions.  相似文献   

5.
We report a process of selective conversion of microcrystalline cellulose to hexitols over bi-functional Ru-supported sulfated zirconia and silica-zirconia catalysts. A 58.1% yield of hexitols and a 71.0% conversion of cellulose were achieved over Ru/SZSi(100:15)-773 catalyst at 443 K. The as-synthesized catalysts were characterized by X-ray diffraction (XRD), BET, thermogravimetric analysis and pyridine adsorption Fourier transform infrared spectroscopy (FTIR). XRD results indicated that the sulfated catalysts were pure tetragonal phase of ZrO2 when calcined at 773 K. Monoclinic zirconia appeared at the calcination temperature of 873 K, and the content of monoclinic phase increased with the elevating temperature. Compared with sulfated zirconia catalyst, sulfated silica-zirconia catalysts possessed a higher ratio of Brønsted to Lewis on the surface of catalysts, as shown from pyridine adsorption FTIR results. The reaction results indicated that the tetragonal zirconia, which is necessary for the formation of superacidity, was the active phase to cellulose conversion. The higher amounts of Brønsted acid sites can remarkably accelerate the cellulose depolymerization and promote side reactions that convert C5–C6 alcohols into the unknown soluble degradation products.  相似文献   

6.

Abstract  

Two series of Cu/Co/Cr modified Fischer–Tropsch catalyst promoted with Zn or Mn and an alkaline metal (Me: Li, Na, K, Rb, Cs) were prepared by co-precipitation method and tested for high alcohol synthesis (HAS) at one hour on-stream and at two temperatures, 300 and 350 °C. The results indicate that the best selectivity toward high alcohols depends on temperature and catalysts composition and is obtained as follows: a) at 300 °C over catalysts without Zn and containing K, Na and Rb; b) at 350 °C over catalysts without Zn and containing K; c) at 350 °C over catalysts containing Zn as well as Li and Cs.  相似文献   

7.
Ru modified MCM-41 mesoporous material, Y and Beta zeolites were synthesized, characterized and investigated in ring opening of decalin. Ru-MCM-41 catalysts were prepared using ion-exchange, impregnation and in situ synthesis methods. Ru-MCM-41, Ru-Y and Ru-Beta zeolite catalysts were characterized using XRD, SEM, EDXA, FTIR, XRF and nitrogen adsorption. Ru modification of MCM-41, Y and Beta zeolites did not influence the parent phase purity of materials. Microporous H-Beta and H-Y catalysts showed larger number of Brønsted acid sites than H-MCM-41 mesoporous material. Method of Ru introduction in MCM-41 was observed to influence conversion of ring opening of decalin and selectivity to ring opening products. Ru-MCM-41-IE catalyst prepared by ion-exchange method exhibited higher conversion of decalin than Ru-MCM-41-IMP and Ru-MCM-41-IS catalysts prepared by impregnation and in situ synthesis methods. Ru-MCM-41-IS catalyst prepared by in situ method showed higher selectivity to ring opening products than Ru-MCM-41-IE and Ru-MCM-41-IMP catalysts.  相似文献   

8.
Ru catalysts were supported on two different carbon materials, multiwall carbon nanotubes and bamboo-like carbon nanotubes doped with nitrogen, which were synthesized by catalytic chemical vapour deposition of C2H2/H2/N2 or C2H2/NH3/H2/N2, respectively, over Fe/SiO2 catalyst. All the carbon supports and/or the prepared Ru catalysts were characterized by several techniques including transmission electron microscopy, X-ray photoelectron spectroscopy, N2 adsorption isotherms and CO chemisorption. The Ru catalysts were tested in the catalytic ammonia decomposition reaction. High yields towards hydrogen production were achieved. Carbon nanotubes were heated in an inert atmosphere at temperatures up to 1773 K in order to study the effects of such support treatments on the ammonia decomposition reaction. The elimination of acidic groups from the surfaces, prior to catalyst preparation, and/or the surface graphitization of the materials produced a higher catalytic activity during the reaction. The catalytic activity of Ru particles was significantly improved when supported on carbon nanotubes doped with nitrogen.  相似文献   

9.
Ru/TiO2 catalysts were prepared by spray reaction (SPR) and conventional impregnation (IMP) methods. The catalytic activities of SPR fine particles were much higher than those of IMP catalysts for CO2 hydrogenation. A high temperature reduction greatly promoted the activity of SPR catalyst. A model of surface structure was proposed which exhibits the enhancement of decoration and the formation of more boundaries over spr-Ru/TiO2. The high activity of SPR catalyst is attributed to the occurrence of new active sites at the metal–support perimeters and not any SMSI phenomenon. EXAFS reveals that the Ru atom was interacting with TiO2 by oxygen atom so strongly on the SPR catalysts that a part of the Ru atoms, located near the internal interface between Ru particles and TiO2 support, existed as Run+ (n<4) cations even if SPR catalyst was subjected to a high temperature reduction. These Run+ cations are responsible for the inhibition of SMSI formation over SPR catalysts.  相似文献   

10.
于子钧  张纪梅 《工业催化》2013,21(10):53-56
利用静态氮吸附仪在-196.15 ℃液氮气氛中,测定Ru/Al2O3催化剂的比表面积以及孔结构参数,研究了催化剂的孔容-孔径分布和吸附-脱附等温线。基于FHH多层吸附模型,利用全吸附数据计算出Ru/Al2O3催化剂的表面分形维数。结果表明,3种Ru/Al2O3催化剂的表面分形维数均约2.4,分形维数与比表面积和总孔体积无直接关联。  相似文献   

11.
The effect of sodium on the Pd-catalyzed reduction of NO by methane   总被引:1,自引:0,他引:1  
The kinetics of NO reduction by methane over Pd catalysts supported on 8 mol% yttria-stabilised zirconia (YSZ) has been studied at atmospheric pressure in the 620–770 K temperature range. Langmuir–Hinshelwood type kinetics are found with characteristic rate maxima reflecting competitive adsorption of NO and methane: NO adsorption is much more pronounced than that of methane within the temperature range of this investigation. Pd is an effective catalyst: 100% selectivity towards N2 can be achieved at 100% conversion of NO over this wide temperature range. Sodium causes strong poisoning of the reaction. The response of the system to variations in NO and methane concentrations, temperature, and sodium loading indicate that this is due to the Na-induced enhancement of NO chemisorption and dissociation relative to methane adsorption, i.e. sodium enhances oxygen poisoning of the catalyst. These results stand in revealing contrast to the strong promotional effect of sodium in the reduction of NO by propene over the same catalysts. The very different response of the two hydrocarbon reductants to Na doping of the Pd catalyst receives a consistent explanation.  相似文献   

12.
This paper presented a study on the role of yttrium addition to Ru‐based catalysts for liquid phase paranitrotoluene hydrogenation reaction. An impregnation‐precipitation method was used for preparation of a series of yttrium doped Ru/NaY catalysts with yttrium content in the range of 0.0026–0.0052 g/g. Properties of the obtained samples were characterized and analyzed by X‐ray diffraction (XRD), H2‐TPR, Transmission electron microscopy (TEM), ICP atomic emission spectroscopy, and Nitrogen adsorption‐desorption. The results revealed that catalytic activity of NaY supported Ru catalysts increased with the yttrium content at first, then decreased with the further increase of yttrium content. When yttrium content was 0.0033 g/g, a Ru‐Y/NaY2 catalyst showed the most excellent performance of paranitrotoluene hydrogenation reaction (paranitrotoluene conversion and the selectivity toward P‐methyl‐cyclohexylamine reached 99.9 % and 82.5 %, respectively). In addition, to compare with the performance of Ru‐Y/NaY catalysts, the active carbon supported Ru catalysts were prepared using the same method in view of its higher surface area and adsorption capacity. Finally, the effect of solvent on the reaction over Ru‐Y/NaY2 catalyst has been investigated, it was found that the best performance of paranitrotoluene hydrogenation reaction took place in protic solvents (isopropanol and ethanol). This was mainly ascribed to their polarity and hydrogen‐bond accepting capability.
  相似文献   

13.
采用浸渍法制备了双金属Ru-Ni/AC系列催化剂,并采用X射线衍射(XRD)、程序升温还原(H2-TPR)和CO脉冲吸附等表征手段对催化剂进行了表征.在邻苯二甲酸二异辛酯(DOP)加氢制备环己烷1,2-二甲酸二异辛酯(DEHCH)反应中评估了该系列催化剂的性能,并讨论了Ni在其中的作用.发现掺杂Ni后RuNi/AC催化...  相似文献   

14.
葡萄糖氢化制山梨醇Ru/C催化剂的研究   总被引:1,自引:0,他引:1  
首先用正交实验考察了溶液温度、pH值、搅拌速率等因素对葡萄糖氢化制山梨醇Ru/C催化剂吸附量的影响规律,并据此用浸渍及甲醛还原法制备了系列Ru/C催化剂,在0.5 MPa和120 ℃测得葡萄糖加氢生成山梨醇的催化活性、山梨醇选择性和催化剂的稳定性。结果表明,钌的负载量对Ru/C催化剂的性能影响较大,负载钌质量分数为5%时,制得的催化剂具有较佳的性能。  相似文献   

15.
以不同晶型的TiO_2为载体采用化学还原浸渍法制备了三种Ru/TiO_2催化剂,并利用X射线衍射(XRD)、N_2吸附-脱附、透射电镜(TEM)、NH_3程序升温脱附(NH_3-TPD)和傅里叶变换红外光谱(FTIR)等表征手段研究了催化剂的物理化学性质,考察了其在苯选择性加氢反应中的催化性能。结果表明:苯选择性加氢活性与Ru/TiO_2催化剂的Ru粒子分散度有关,Ru粒子分散度越高,催化活性越高;而环己烯选择性与Ru/TiO_2催化剂的酸量呈负相关,Ru/TiO_2-P催化剂的酸量最低,对环己烯的吸附量最低,在相同转化率下苯加氢生成环己烯的选择性最高。动力学分析表明,苯加氢生成环己烯的反应速率常数(k_1)与环己烯加氢生成环己烷的反应速率常数(k_2)的比值与环己烯收率呈近似正相关。  相似文献   

16.
助剂对钌基氨合成催化剂活性的作用研究   总被引:2,自引:0,他引:2  
利用等体积浸渍法制备了活性炭负载钌基氨合成催化剂,考察了助剂Ba、K、Sm对催化活性的影响,探讨了其改善活性的调变规律。用TPD技术研究了氮在系列催化剂上的脱附行为。研究结果表明,助剂Ba、K、Sm的加入显著地提高了催化剂的活性,多助剂催化剂的活性明显优于单助剂催化剂。稀土金属氧化物Sm2O3除具有助催作用外,还有助于催化剂的热稳定性及钌的分散。在钌基氨合成催化反应中,N2 分子的活化离解是速控步骤。氮的脱附活化能愈低,催化活性愈高,其脱附活化能次序为Ru>Ru-Sm>Ru-K>Ru-Ba>Ru-Sm-K>Ru-Sm-Ba>Ru-Ba-K>Ru-Sm-Ba-K。  相似文献   

17.
The present paper discloses a new alternative method for the isomerization of eugenol to isoeugenol where mesoporous materials containing niobium are used as solid base catalysts, affording good yields of isomerized product and being environmentally friendly. Nb-containing MCM-41 mesoporous materials were modified with alkaline cations (Li, Na, K, Rb and Cs) and characterized by BET, FTIR, XRD, and UV–vis techniques. The prepared materials were tested in the isomerization of eugenol to isoeugenol by sonochemical and thermally-activated reactions. Li, Na, K, Rb, and Cs/NbMCM-41 catalysts are active catalyst for the preparation of isoeugenol, and selective to the trans-isomer. Rb/NbMCM-41 sample is the optimum catalysts for the reaction. This result is in accordance with the calculated basicity observed during the Knoevenagel probe reaction of basicity. Conversions around 90% are obtained when using Rb-NbMCM-41 catalysts, with 90% selectivity to trans-isoeugenol, under ultrasound activation. In contrast, conversion around 72% with 90% selectivity is attained under classical thermal activation. The catalysts were reused four times without a substantial decrease of activity.  相似文献   

18.
Structured catalysts prepared by means of coating cordierite monoliths with alumina-based suspensions containing transition metals such as Cu, Co and Fe and alkali/alkali-earth promoters such as K and Ba. Textural and structural features of these catalysts were analyzed by means of N2 adsorption and SEM. Their activity in the simultaneous removal of soot and NOx was assayed in a lab-scale installation, using a carbon black as diesel surrogate. Catalysts exhibited significant activity in deNOx and soot oxidation. K and Ba enhanced both NOx adsorption and soot–catalyst contact. However Ba contributed to a greater extent to the adsorption of N-species, which moreover presented higher thermal stability than on K-catalysts, and K showed higher mobility than Ba. Thus, Ba-containing catalysts showed increased activity towards NOx reduction but shifted to higher temperatures in comparison to K-catalysts, which on the other hand resulted more active towards soot oxidation than Ba-ones. Fe-based catalyst turned out to be less active both in soot oxidation and NOx reduction than Co and Cu-based ones. Intensive calcination of the catalysts at 800 °C for 5 h resulted in substantial loss of K and Ba. Loss of promoter depends, however, on the metal contained in the catalyst. In this sense Fe-containing catalysts showed higher stability. Calcination has a substantial effect on catalytic activity. Catalyst significantly lost their NOx adsorption capacity and showed similar activity than a catalyst prepared in absence of promoter, pointing to a substantial change in reaction mechanism and reaction predominantly occurring on metallic sites upon the loss of alkali/alkali-earth compound.  相似文献   

19.
活性炭载体对钌催化剂制备及其活性的影响   总被引:4,自引:3,他引:4  
选择 5 种活性炭作为载体制备负载型钌催化剂,采用元素分析、物理吸附和化学吸附等表征手段,考察活性炭载体的化学组成和表面结构对钌催化剂金属分散状况的影响。以不同活性炭为载体制备了一系列钡助催钌催化剂,并在450 ℃、10.0 MPa条件下进行氨合成活性评价。研究结果表明,活性炭载体的原材料及其制备工艺决定了载体的化学组成和表面结构,以具有高纯度、较大比表面积、较大比孔容和适当孔结构分布的活性炭为载体制备的钌催化剂具有较高的氨合成催化活性。  相似文献   

20.
反应条件对钌催化剂和铁催化剂的氨合成性能影响   总被引:1,自引:0,他引:1       下载免费PDF全文
Activated carbon-supported Ru-based catalyst and A301 iron catalyst were prepared,and the influences of reaction temperature,space velocity,pressure,and H2/N2 ratio on performance of iron catalyst coupled with Ru catalyst in series for ammonia synthesis were investigated.The activity tests were also performed on the single Ru and Fe catalysts as comparison.Results showed that the activity of the Ru catalyst for ammonia synthesis was higher than that of the iron catalyst by 33.5%-37.6% under the reaction conditions:375-400 °C,10 MPa,10000 h-1,H2︰N2 3,and the Ru catalyst also had better thermal stability when treated at 475 °C for 20 h.The outlet ammonia concentration using Fe-Ru catalyst was increased by 45.6%-63.5% than that of the single-iron catalyst at low tem-perature (375-400 °C),and the outlet ammonia concentration increased with increasing Ru catalyst loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号