首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用Gleeble-3500热模拟试验机对GH5188高温合金试样进行热压缩试验,研究其在应变速率为0.001~0.1s-1和变形温度在1000~1150℃时的热变形行为;建立了基于BP神经网络的本构模型,并验证了所建本构模型的可靠性,最后基于误差计算分析了BP神经网络本构模型的精度。结果表明,温度和应变速率对GH5188合金流变应力的影响明显,随着压缩温度升高和应变速率降低,GH5188合金流变应力明显减小。经定量误差计算分析,BP神经网络本构模型应力预测偏差值在10%以内的数据点占97.92%,BP神经网络模型能准确地预测GH5188高温合金的高温流变应力。  相似文献   

2.
通过Gleeble-3800热模拟实验机,在应变速率为0.1~20 s-1、变形温度为900~1200℃的条件下对轻轨用55Q钢进行轴向单道次压缩实验,得到55Q钢的真应力-真应变曲线,并分析研究了不同热加工条件对55Q钢高温流变应力的影响。实验结果表明:在相同变形温度下,低应变速率时的流变应力较低,在相同应变速率下,高温时的流变应力较低,说明低应变速率和高温有利于动态软化。对流变应力、应变速率和变形温度之间的关系进行线性拟合,建立了55Q钢的修正Johnson-Cook本构模型和基于应变补偿的Arrhenius本构模型,对比两种模型发现,基于应变补偿的Arrhenius本构模型的预测精度更高,能够较好地揭示55Q钢的热变形特性。  相似文献   

3.
在Gleeble-3500热模拟试验机上对TA2纯钛进行变形温度为800℃~950℃、应变速率为0.001~1s-1,压下量为50%条件下的热压缩变形试验。采用一种考虑应变的改进摩擦修正模型对原始试验数据进行摩擦修正,在对TA2纯钛高温流变曲线进行分析的基础上,研究其高温变形行为,构建TA2纯钛热变形本构方程。结果表明,在低应变条件下TA2纯钛流变应力迅速增加,达到峰值应力后流变曲线趋于稳态变化;流变应力随变形温度的降低和应变速率的增大而增加;可采用包含Z参数在内的双曲正弦形式的本构方程来描述TA2纯钛高温热变形行为,材料热变形激活能为480.944kJ/mol;流变应力的模型预测值与试验值之间相关性较高,相关系数R为0.964,表明本文基于改进摩擦修正模型所建立的本构方程具有较高的精度。  相似文献   

4.
6082铝合金的高温本构关系   总被引:2,自引:0,他引:2  
韦韡  蒋鹏  曹飞 《塑性工程学报》2013,20(2):100-106
利用Gleeble-3500热模拟机,研究6082铝合金在350℃~500℃、应变速率10-2s-1~5s-1、最大变形程度60%条件下的热压缩变形行为。得到了高温下该铝合金的真应力-应变曲线。分析流变应力与应变速率和变形温度之间的关系,建立了高温热变形的本构关系。推导出包含Arrhenius项的Zener-Hollomon参数所描述的高温流变应力表达式。为减少应变的影响,建立4阶多项式对材料参数进行拟合,得到改进的本构方程,并与实验值进行对比。结果表明,应变速率和变形温度对6082铝合金流变应力有显著影响,流变应力随变形温度的升高而降低,随应变速率的增大而增大。该合金属于正应变速率敏感材料,合金热变形过程受热激活控制,激活能为145.977kJ/mol。  相似文献   

5.
为了研究退火态42CrMo钢的热变形行为,利用Gleeble3800热模拟试验机进行了单道次热压缩实验,获得了变形温度930~1230℃、应变速率0.001~1 s-1条件下的高温流变应力曲线。分别应用Arrhenius方程和Yada模型构建了42CrMo钢的高温本构模型和动态再结晶动力学模型,并基于动态材料模型应用不同变形条件下的峰值应力构建了其热加工图。结果表明,在大部分变形条件下,高温流变应力曲线呈典型动态再结晶特征,由于动态再结晶的作用,流变应力随变形温度的升高或应变速率的降低而减小。基于峰值应力构建的42CrMo钢高温本构模型和动态再结晶模型可以用于预测不同变形条件下的流变应力和微观组织演变。此外,根据42CrMo钢的热加工图,最佳热加工工艺参数范围为1100~1230℃、0.01~1 s-1。  相似文献   

6.
AZ61镁合金高温变形应力修正及本构方程的建立   总被引:2,自引:1,他引:2  
有限元模拟日益成为金属成形工艺优化的有力工具,而工程材料变形行为本构方程的精确描述是保证模拟精度的关键之一。通过热模拟实验对AZ61镁合金的高温压缩变形行为进行研究,实验设备为Gleeble3500热模拟实验机,实验采用的温度为250、300、350、400和450℃,应变速率为0,01、0,1、1、10和50s^-1。研究发现,AZ61镁合金流变应力随变形温度的升高而降低,随应变速率的升高而升高。在高应变速率下,变形热引起的试样温升非常显著。为了真实地反应AT61镁合金高温压缩变形时的力学行为,对流变应力作出相应修正,并根据修正后的流变应力建立高温变形本构方程。  相似文献   

7.
采用Gleeble?1500热模拟机,在变形温度为1 100~1 350℃、变形速率为0.01~5 s?1、变形量为60%的实验条件下,对纯钼板坯的高温塑性变形行为进行研究。结果表明:流变应力随变形温度的升高而减小,随应变速率的增大而增大;不同变形温度下流变应力之间的差值随着应变速率的增加逐渐减小;同一应变速率下,峰值应力随变形温度的升高向应变小的方向推移。采用包含Zene-Hollomon参数的双曲正弦模型,建立了纯钼板高温塑性流变应力与变形温度和应变速率之间的本构方程。依据本构方程计算出的纯钼板坯流变应力理论值与实际值的平均相对误差仅为3.68%,表明该本构方程可为纯钼热成形加工工艺的制定提供理论依据。  相似文献   

8.
采用Gleeble-3500型热模拟试验机,对Ti-10. 2Mo-4. 9Zr-5. 5Sn合金进行等温恒应变速率压缩实验,研究其在变形温度943~1093 K,应变速率0. 001~10 s-1范围内的热变形行为,并构建一个层数为3×15×10×1的PSO-BP神经网络结构形式的本构关系模型。结果表明,合金的流变应力对变形温度和应变速率较为敏感,变形温度升高和应变速率减小都会使流变应力降低;在高温和低应变速率条件下,流变曲线大多呈现稳态流动特征,但在应变速率为10 s-1时,流动应力随应变增加呈下降趋势,软化现象较为显著;采用PSO-BP神经网络建立Ti-10. 2Mo-4. 9Zr-5. 5Sn合金本构模型,经过误差计算得出,该模型的相关系数和平均相对误差分别为0. 9892和2. 48%,预测值偏差在10%以内的数据点占91. 59%,具有良好的精度。  相似文献   

9.
采用Gleeble-1500D试验机对X12钢进行热压缩试验,应变速率范围为0.05~5 s-1,变形温度范围为950~1200℃,研究其高温成形工艺,分析变形温度、应变速率等对流变应力的影响,在考虑应变对材料常数影响的基础上,建立了X12材料基于应变补偿的Arrhenius本构模型,并对所建立的本构模型进行验证。结果表明:随着变形温度的升高或应变速率的降低,真应力和峰值应力逐渐减小;修正后的Arrhenius本构模型能够很好的预测X12钢的流动应力,该模型具有良好的准确性和可靠性。  相似文献   

10.
利用Gleebe-3800热模拟机对304Cu奥氏体不锈钢进行单道次高温压缩试验,研究其在1000~1200℃、0.1~10 s-1条件的流变行为,利用Johnson-Cook方程建立该材料的热变形本构模型.研究表明,温度和应变速率对304Cu奥氏体不锈钢的流变应力影响显著,流变应力随温度升高而减小,随应变速率增加而增大;基于Johnson-Cook方程的本构模型预测值与实验值较吻合,平均绝对误差为8.67%.  相似文献   

11.
采用Gleeble-3800热模拟机研究粉末冶金Ti-47Al-2Cr-2Nb-0.2W-0.15B(摩尔分数,%)合金在变形温度为1 100~1 250 ℃、应变速率为10-3~100 s-1和变形率为50%条件下的高温变形行为.结果表明:Ti-47Al-2Cr-2Nb- 0.2W-0.15B合金在高温变形初始阶段,流动应力随应变的增加迅速增加;当应变超过一定值后,流变应力开始下降并逐渐趋于稳定,出现稳态流动特征;随着形变温度的升高和应变速率的增加,合金高温变形时的峰值应力和稳态应力显著降低.利用热模拟压缩实验数据,基于Arrhenius 方程和Zener-Hollomon参数,运用多元回归分析方法建立Ti-47Al-2Cr-2Nb-0.2W-0.15B合金在高温变形过程中的流变应力本构模型.应用DEFORMTM 3D软件验证该流变应力本构模型的有效性,结果表明所得高温流变应力本构模型能够较好地预测Ti-47Al-2Cr-2Nb-0.2W- 0.15B合金的高温变形行为.  相似文献   

12.
挤压态7075铝合金高温流变行为及神经网络本构模型   总被引:1,自引:0,他引:1  
采用Gleeble1500D热模拟实验机研究挤压态7075铝合金在变形温度为250~450℃、应变速率为0.01~10s-1下单道次压缩过程的高温流变行为。结果表明:材料在350℃及以下变形时,流变应力曲线呈动态回复型;在温度为350℃以上、应变速率为0.1s-1时,流变曲线局部陡降明显;当应变速率为10s-1时,流变曲线发生波动,呈动态再结晶型;挤压态7075铝合金的流变应力曲线峰值应力及稳态应力均高于铸态合金的,且在变形温度较高时,挤压态材料更易于发生动态软化。基于BP神经网络建立挤压态7075铝合金的本构关系模型,预测值与实验值对比表明:所建立的本构模型整体误差在5.35%以内,拟合度为2.48%,该模型可以用于描述7075铝合金的高温变形流变行为,为该合金热变形过程分析和有限元模拟提供基础。  相似文献   

13.
利用Gleeble1500热模拟试验机在温度范围600~900℃、应变速率范围10-2~10 s-1等对HC1150/1400MS马氏体钢试件进行等温拉伸试验,进而构建了马氏体钢热加工过程的数值模拟需要的高温本构模型,用以根据应变、应变速率及变形温度预测流动应力。试验得到该材料奥氏体组织在不同温度及应变速率下的真应力、真应变曲线,显示材料的流动应力随变形温度的降低和应变速率的提高而增大,随变形温度的升高和应变速率的降低而减小。选用修正的Arrhenius双曲正弦模型对其高温力学行为进行描述,采用四次多项式拟合获得Arrhenius本构方程中参数α,β,n1,n,ln A,Q与应变的对应关系,最终确定包含变形温度及应变速率的流变应力计算方程。采用拟合度表示计算应力与实测应力的相关性,拟合度结果表明该本构模型对HC1150/1400MS马氏体钢高温流动应力的预测较准确。  相似文献   

14.
通过Gleeble-1500D数控动态热-力学模拟试验机对铸态C19400合金进行了高温等温热压缩试验,研究了该合金在变形温度700~950℃,应变速率0.001~10 s~(-1)条件下的高温变形行为。结果表明:在同一应变速率下,铸态C19400合金的流变应力随温度的升高而降低,在同一变形温度下,合金流变应力随应变速率的升高而升高。应变速率为0.001、0.01、0.1和1 s~(-1)时,动态软化以动态回复为主;应变速率为10 s~(-1)时,动态软化以动态再结晶为主,且再结晶程度随变形温度的升高而增加。此外,本文提出了一种基于MATLAB平台编程计算本构方程的方法,得到了基于Arrhenius双曲正弦本构关系的铸态C19400合金峰值流变应力本构方程,并计算得到该本构方程计算应力与试验应力的相对误差AARE为2.71%、相关系数R为0.9977,表明计算结果与试验结果高度吻合。  相似文献   

15.
为了研究铸态P91耐热合金钢的高温变形流变特性,建立铸态P91耐热合金钢高温流变应力本构方程,采用Gleeble-3500热模拟实验机对铸态P91耐热合金钢进行等温热压缩实验,研究了变形温度为900~1200℃、应变速率为0.01~5 s-1、变形量为60%条件下的热变形行为。研究结果表明,随着变形温度的升高和应变速率的降低,动态再结晶现象越容易发生,流变应力显著降低,曲线由加工硬化型向动态回复及动态再结晶型转变。在双曲正弦修正的Arrhenius型方程及Zener-Hollomon参数的基础上,考虑真应变对流动应力的影响,建立了铸态P91耐热合金钢的流变应力模型及本构方程。误差分析表明,所建立的本构方程具有良好的精度。  相似文献   

16.
利用Gleeble3500热模拟机,研究TiB95合金在高温塑性变形过程中的流变应力行为,试验应变速率为0.01~10s-1,变形温度为850℃~1050℃,变形量均为60%。对TiB95合金真应力-真应变曲线进行分析,结果表明:在相同的应变速率下,流变应力随着温度的升高而降低;而在相同的变形温度下,流变应力随着应变速率的减小而降低。同时,通过Zener-Hollomon模型建立的TiB95合金高温变形时的流变应力模型表征了变形温度、应变速率和变形程度对流动应力的影响,模型的计算精度较高,形变激活能Q为723.679kJ/mol。  相似文献   

17.
为获得大规格角钢高温变形时的流变应力,在Gleeble-3500热模拟实验机上,对V-Nb微合金化Q420B大规格角钢进行了高温单轴压缩实验,变形温度为750~1100℃,应变速率为0.1~30 s-1。结果表明,一定实验条件下,当变形温度升高时,实验钢的高温流变应力会随之呈指数函数关系增大;当应变速率的增大时,实验钢的高温流变应力会随之呈幂函数关系增大;随着应变量的增加,实验钢的高温流变应力先增大而后逐渐达到稳定。根据高温流变应力与变形温度、应变速率以及应变的关系,构建了V-Nb微合金化实验钢的高温流变应力本构方程,计算值与实测值具有较好的拟合精度,证明了其可用于实际生产中轧制力的计算。  相似文献   

18.
通过高温热压缩试验研究Ti-555钛合金热变形过程中变形温度、应变速率对流变应力的影响,采用Arrhenius双曲正弦函数模型推导出Ti-555本构方程,并依据动态材料模型建立了ε=0.6时的热加工图。结果表明,Ti-555钛合金流变应力对应变速率和变形温度较为敏感,热变形时随变形温度的升高或应变速率的降低,流变应力下降。根据热加工图确定了2个热加工安全区参数为:(1)变形温度为850~950℃、应变速率为0.6~10 s-1;(2)变形温度为950~1150℃、应变速率为0.36~0.9 s-1。  相似文献   

19.
采用Thermecmaster-Z型热模拟试验机在变形温度为800~1000℃、应变速率为0.001~10 s-1条件下对S280超高强度不锈钢进行了等温恒应变速率压缩实验,分析了S280超高强度不锈钢的热变形行为,计算了热变形激活能。考虑变形温度对自扩散系数和杨氏模量的影响,建立了S280超高强度不锈钢基于应变补偿的物理本构模型。以变形温度、应变速率和应变为输入变量,流动应力为响应目标,建立了S280超高强度不锈钢的响应面本构模型。结果表明,S280超高强度不锈钢为正应变速率负温度敏感型材料,其流动应力随应变速率的增加和变形温度的降低而增大。热变形激活能对变形条件敏感,其随变形温度、应变速率和应变的增加而减小。基于应变补偿的物理本构模型具有一定的物理意义和良好的预测精度,其相关系数R和平均相对误差eAARE分别为0.971和7.8%。响应面本构模型的响应曲面和等高线图能反映变形条件之间的相互作用对流动应力的影响。建立的两个本构模型都能够用于表征S280超高强度不锈钢在热变形过程中的流动应力行为。  相似文献   

20.
通过在Gleeble-3500型热模拟实验机上对GH5188合金进行等温热压缩实验,在变形温度为1030~1150℃、应变速率为0.01~10s-1的条件下,研究其热压缩变形的流变应力变化规律。在应力-应变结果的基础上,采用引入应变量因素的Arrhenius方程,建立了描述GH5188合金高温变形特性的本构方程。结果表明:变形温度和应变速率对GH5188合金流变应力影响显著,随变形温度升高和变形速率的降低,相同变形程度下合金的流变应力显著降低,并且在较低的应变下合金即可达到稳态流变状态。GH5188合金流变应力计算值和实验值相对误差较小,所建立的本构方程具有良好的预测能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号