首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intra-cavitary drug blockade of hERG1 channel has been extensively studied, both experimentally and theoretically. Structurally diverse ligands inadvertently block the hERG1 K+ channel currents lead to drug induced Long QT Syndrome (LQTS). Accordingly, designing either hERG1 channel openers or current activators, with the potential to target other binding pockets of the channel, has been introduced as a viable approach in modern anti-arrhythmia drug development. However, reports and investigations on the molecular mechanisms underlying activators binding to the hERG1 channel remain sparse and the overall molecular design principles are largely unknown. Most of the hERG1 activators were discovered during mandatory screening for hERG1 blockade. To fill this apparent deficit, the first universal pharmacophore model for hERG1 K+ channel activators was developed using PHASE. 3D structures of 18 hERG1 K+ channel activators and their corresponding measured binding affinity values were used in the development of pharmacophore models. These compounds spanned a range of structurally different chemotypes with moderate variation in binding affinity. A five sites AAHRR (A, hydrogen-bond accepting, H, hydrophobic, R, aromatic) pharmacophore model has shown reasonable high statistical results compared to the other developed more than 1000 hypotheses. This model was used to construct steric and electrostatic contour maps. The predictive power of the model was tested with 3 external test set compounds as true unknowns. Finally, the pharmacophore model was combined with the previously developed receptor-based model of hERG1 K+ channel to develop and screen novel activators. The results are quite striking and it suggests a greater future role for pharmacophore modeling and virtual drug screening simulations in deciphering complex patterns of molecular mechanisms of hERG1 channel openers at the target sites. The developed model is available upon request and it may serve as basis for the synthesis of novel therapeutic hERG1 activators.  相似文献   

2.
Ca (or Sr)TiO3:Eu3+, M (Li+ or Na+ or K+) and CaTiO3:Pr3+, M (Li+ or Na+ or Ag+ or K+ or Gd3+ or La3+) powders were prepared by combustion synthesis method and the samples were further heated to ~1000 °C to improve the crystallinity. The structure and morphology of materials were examined by X-ray diffraction (XRD) and a scanning electron microscopy (SEM). The morphologies of SrTiO3:Eu3+, CaTiO3:Eu3+ or CaTiO3:Pr3+ powders co-doped with other metal ions were very similar. Small and coagulated particles of nearly cubical shapes with small size distribution having smooth and regular surface were formed. Photo-luminescence spectra of CaTiO3:Pr3+ and co-doped either with Li+, Na+, K+, Ag+, La3+ or Gd3+ ions showed red emissions at 613 nm due to the 1D2  3H4 transition of Pr3+. The variation of intensity of emission peak with different co-doping follows the order: K+ > Ag+ > Na+ > Li+ > La3+ > Gd3+. The characteristic emissions of CaTiO3:Eu3+ lattices had strong emission at 614 and 620 nm for 5D0  7F2 with other weak transitions observed at 580, 592, 654, 705 nm for 5D0  7Fn transitions where n = 0, 1, 3, 4 respectively in all host lattices. Photoluminescence intensity in SrTiO3:Eu3+ is more than CaTiO3:Eu3+ lattices. A remarkable increase of photoluminescence intensity (in 5D0  7F2 transition) was observed if co-doped with Li+ ions in CaTiO3:Eu3+ and SrTiO3:Eu3+.  相似文献   

3.
4.
5.
CaMoO4:RE3+,Yb3+ (RE = Er, Ho, Tm) phosphors were successfully synthesized by a facile hydrothermal method. XRD patterns confirmed tetragonal structure under different RE3+ and M+ ions doping conditions. Particles shapes and sizes were confirmed by SEM and TEM analyses. Particles shape and size were well tuned by control of solution pH; spherical balls consisting of nano-grains at low pH of ∼2, rice grain shapes at moderate pH of ∼6, and thin flakes at higher pH of ∼12, were observed. Fine tunability of upconversion (UC) emission color was achieved by doping multiple RE3+ ions within a single CaMoO4 host. Blue, green and orange upconverted emission were observed by doping Tm3+, Er3+ and Ho3+ in the CaMoO4, respectively. Further, the emission colors were well tuned by the combination of Tm, Er and Ho ions and their concentrations. CaMoO4:Tm3+,Ho3+,Yb3+ exhibited perfect white emission with well tunability from cool white to warm white colors. Substitution of part of Ca ions by M+ (M = Li, Na, K, Rb) ions affected the crystal field symmetry around RE3+ ions and hence changed the transition probabilities between their f–f transition levels, consequently intensified the UC intensities. The blue (Tm3+), green (Er3+), and orange (Ho3+) upconversion intensities of CaMoO4:RE3+,Yb3+,0.10 K+ phosphors increased by 60, 50 and 40 folds compared to the unsubstituted analogues, respectively. The K substituted CaMoO4:RE3+,Yb3+,K+ phosphors exhibited intense UC emissions visible by naked eye even pumped by less than 1 mW laser power and can have potential application in displays and variety of other applications.  相似文献   

6.
7.
8.
The geometries, interaction energies and bonding properties of cationic pnicogen bond (CPB) interactions are studied in binary XH3P+⋯NCY (X = H, F, CN, NH2, OH; Y = H, Li, F, Cl) complexes by means of MP2/aug-cc-pVTZ calculations. Interaction energies of these binary complexes span a large range, from −16.36 kcal/mol in (NH2)H3P+⋯NCF to −71.36 kcal/mol in FH3P+⋯NCLi complex. The spin–spin coupling constant across P⋯N interaction depends considerably on the nature of X and Y substituents. The characteristic of CPB interactions is analyzed in terms of parameters derived from quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) analyses. The charge transfer from the nitrogen base to the cationic acid stabilizes these pnicogen–bonded complexes. For a given XH3P+, the net charge transfer value increases as the interaction energy of the complex becomes more negative, i.e., NCLi > NCCl > NCH > NCF. Moreover, mutual influence between the CPB and hydrogen/halogen/lithium bond is studied in the ternary XH3P+⋯NCY⋯NCH complexes. The results indicate that the formation of a Y⋯N interaction tends to strengthen CPB in the ternary systems.  相似文献   

9.
Gas hydrate is not only a potential energy resource, but also almost the biggest challenge in oil/gas flow assurance. Inorganic salts such as NaCl, KCl and CaCl2 are widely used as the thermodynamic inhibitor to reduce the risk caused by hydrate formation. However, the inhibition mechanism is still unclear. Therefore, molecular dynamic (MD) simulation was performed to study the dissociation of structure I (SI) methane hydrate in existence of inorganic salt aqueous solution on a micro-scale. The simulation results showed that, the dissociation became stagnant due to the presence of liquid film formed by the decomposed water molecules, and more inorganic ions could shorten the stagnation-time. The diffusion coefficients of ions and water molecules were the largest in KCl system. The structures of ion/H2O and H2O/H2O were the most compact in hydrate/NaCl system. The ionic ability to decompose hydrate cells followed the sequence of: Ca2+ > 2K+ > 2Cl > 2Na+.  相似文献   

10.
The lowest-energy structures and stabilities of the heterodinuclear clusters, CNLin (n = 1–10) and relevant CNLin+ (n = 1–10) cations, are studied using the density functional theory with the 6-311 + G(3df) basis set. The CNLi6 and CNLi5+ clusters are the first three-dimensional ones in the CNLin0/+ series, respectively, and the CN group always caps the Lin0/+ moiety in the CNLin0/+ (n = 1–9) configurations. The CN triple bond is found to be completely cleaved in the CNLi100/+ clusters where the C and N atoms are bridged by two Li atoms. The CNLin (n = 2–10) clusters are hyperlithiated molecules with delocalized valence electrons and consequently possess low VIP values of 3.780–5.674 eV. Especially, the CNLi8 and CNLi10 molecules exhibit lower VIPs than that of Cs atom and can be regarded as heterobinuclear superalkali species. Furthermore, these two superalkali clusters show extraordinarily large first hyperpolarizabilities of 19,423 and 42,658 au, respectively. For the CNLin+ cationic species, the evolution of the energetic and electronic properties with the cluster size shows a special stability for CNLi2+.  相似文献   

11.
Singlet and triplet potential energy surfaces for the CH3O2 with I reaction have been investigated computationally to propose the reaction mechanisms and possible products. Multichannel RRKM theory and transition-state theory have been used to compute the overall and individual rate constants at 200–3000 K and 10−14–1014 Torr. On the singlet PES, addition-elimination, substitution and H-abstraction mechanisms are located, and the addition-elimination mechanism is dominant. At 70 Torr with N2 as bath gas, IM1(CH3OOI) formed by collisional stabilization is dominated at 200–300 K, whereas CH2O and HIO are the major products at the temperatures between 350 and 3000 K; The title reaction exhibits the typical falloff behavior. The results show that temperature and pressure affect the yield of products.Furthermore, the predicted rate constants at 298 K 70 Torr of N2 agree well with the available experimental values. On the triplet PES, the most favorable product should be CH3I + O2(3Σ) at atmospheric condition. Other two pathways on the triplet PES will not compete with the pathways on the singlet PES in kinetically and thermodynamically.  相似文献   

12.
With the use of Adomian decomposition method, the prototypical, genuinely nonlinear K(m,n) equation, ut+(um)x+(un)xxx=0, which exhibits compactons  solitons with finite wavelength  is solved exactly. Two numerical illustrations, K(2,2) and K(3,3), are investigated to illustrate the pertinent features of the proposed scheme. The technique is presented in a general way so that it can be used in nonlinear dispersive equations.  相似文献   

13.
In this study, an approach based on artificial neural network (ANN) was proposed to predict the experimental cutting temperatures generated in orthogonal turning of AISI 316L stainless steel. Experimental and numerical analyses of the cutting forces were carried out to numerically obtain the cutting temperature. For this purpose, cutting tests were conducted using coated (TiCN + Al2O3 + TiN and Al2O3) and uncoated cemented carbide inserts. The Deform-2D programme was used for numerical modelling and the Johnson–Cook (J–C) material model was used. The numerical cutting forces for the coated and uncoated tools were compared with the experimental results. On the other hand, the cutting temperature value for each cutting tool was numerically obtained. The artificial neural network model was used to predict numerical cutting temperatures by means of the numerical cutting forces. The best results in predicting the cutting temperature were obtained using the network architecture with a hidden layer which has seven neurons and LM learning algorithm. Finally, the experimental cutting temperatures were predicted by entering the experimental cutting forces into a formula obtained from the artificial neural networks. Statistical results (R2, RMSE, MEP) were quite satisfactory. This demonstrates that the established ANN model is a powerful one for predicting the experimental cutting temperatures.  相似文献   

14.
This article aims at finding efficient hyperspectral indices for the estimation of forest sun leaf chlorophyll content (CHL, µg cmleaf? 2), sun leaf mass per area (LMA, gdry matter mleaf? 2), canopy leaf area index (LAI, m2leaf msoil? 2) and leaf canopy biomass (Bleaf, gdry matter msoil? 2). These parameters are useful inputs for forest ecosystem simulations at landscape scale. The method is based on the determination of the best vegetation indices (index form and wavelengths) using the radiative transfer model PROSAIL (formed by the newly-calibrated leaf reflectance model PROSPECT coupled with the multi-layer version of the canopy radiative transfer model SAIL). The results are tested on experimental measurements at both leaf and canopy scales. At the leaf scale, it is possible to estimate CHL with high precision using a two wavelength vegetation index after a simulation based calibration. At the leaf scale, the LMA is more difficult to estimate with indices. At the canopy scale, efficient indices were determined on a generic simulated database to estimate CHL, LMA, LAI and Bleaf in a general way. These indices were then applied to two Hyperion images (50 plots) on the Fontainebleau and Fougères forests and portable spectroradiometer measurements. They showed good results with an RMSE of 8.2 µg cm? 2 for CHL, 9.1 g m? 2 for LMA, 1.7 m2 m? 2 for LAI and 50.6 g m? 2 for Bleaf. However, at the canopy scale, even if the wavelengths of the calibrated indices were accurately determined with the simulated database, the regressions between the indices and the biophysical characteristics still had to be calibrated on measurements. At the canopy scale, the best indices were: for leaf chlorophyll content: NDchl = (ρ925 ? ρ710)/(ρ925 + ρ710), for leaf mass per area: NDLMA = (ρ2260 ? ρ1490)/(ρ2260 + ρ1490), for leaf area index: DLAI = ρ1725 ? ρ970, and for canopy leaf biomass: NDBleaf = (ρ2160 ? ρ1540)/(ρ2160 + ρ1540).  相似文献   

15.
We describe three applications of Magma to problems in the area of designs and the associated codes:    Steiner systems, Hadamard designs and symmetric designs arising from an oval in an even-order plane, leading in the classical case to bent functions and difference-set designs;    the Hermitian unital as a 2-(q3 +  1, q +  1, 1) design, and the code overFp where p divides q +  1;    a basis of minimum-weight vectors for the code over Fpof the design of points and hyperplanes of the affine geometry AGd(Fp), where p is a prime.  相似文献   

16.
17.
A polynomial P(X)  = Xd + ad  1Xd  1 + ⋯ is called lacunary when ad  1 =  0. We give bounds for the roots of such polynomials with complex coefficients. These bounds are much smaller than for general polynomials.  相似文献   

18.
Initial (IC) and boundary conditions (BC) are required in order to solve the set of stiff differential equations included in air quality models. In this work, the influences of IC–BC are analyzed in the northeastern Iberian Peninsula (NEIP) by applying MM5–EMICAT2000–CMAQ. A multiscale-nested configuration has been used to generate the IC–BC. The wider domain (D1) covers an area of 1392 × 1104 km2 centered in the Iberian Peninsula. Domain 2 (D2) covers an area of 272 × 272 km2 in the NEIP (D2) with high spatial and temporal resolution. The information related to BC has been supplied to D2 through one-way nesting. Different scenarios were considered (base case, increments of +50% in ozone (O3) IC, +50% in O3 BC, +50% in O3 precursors IC, +50% in O3 precursors BC and clean BC). The impacts of the IC on a site decrease with simulation time. Focusing on the conditions within the PBL, a 48-h spin-up time is sufficient to reduce the impact factor of IC to 10% or less for O3 since the influence of pervasive local emissions. The influences of BC are more important for areas near domain boundaries, especially in areas where the contribution of O3 precursors is due to a short-medium range transport.  相似文献   

19.
A dataset of 237 human Ether-à-go-go Related Gene (hERG) potassium channel inhibitors (180 of which were used for model building and validation, whereas 57 constituted the “true” external prediction set) collected from 22 literature sources was modeled by 3D-SDAR. To produce reliable and reproducible classification models for hERG blocking, the initial set of 180 chemicals was split into two subsets: a balanced modeling set consisting of 118 compounds and an unbalanced validation set comprised of 62 compounds. A PLS bagging-like algorithm written in Matlab was used to process the data and assign each compound to one of the two (hERG+ or hERG-) activity classes. The best predictive model evaluated on the basis of a fully randomized hold-out test set (comprising 20% of the modeling set) used 4 latent variables and a grid of 6 ppm × 6 ppm × 1 Å in the C-C region, 6 ppm × 30 ppm × 1 Å in the C-N region, and 30 ppm × 30 ppm × 1 Å in the N-N region. An overall accuracy of 0.84 was obtained for both the hold-out test set and the validation set. Further, an external prediction set consisting of 57 drugs and drug derivatives was used to estimate the true predictive power of the reported 3D-SDAR model – a slight reduction of the overall accuracy down to 0.77 was observed. 3D-SDAR map of the most frequently occurring bins and their projection on the standard coordinate space of the chemical structures allowed identification of a three-center toxicophore composed of two aromatic rings and an amino group. A U test along the distance axis of the most frequently occurring 3D-SDAR bins was used to set the distance limits of the toxicophore. This toxicophore was found to be similar to an earlier reported phospholipidosis (PLD) toxicophore.  相似文献   

20.
GdVO4:Eu3+, Bi3+ with tetragonal phase has been successfully synthesized by employing efficient irradiations. The assembly of composites with fine grains based on acoustic energy and microwave radiation requires low temperature (90 °C) and short reaction time (60 min). All the compounds exhibited red emissions and they can be sensitized through the doped Bi3+ ions. The dependence of pH changes and doping concentration on the fluorescence features has been discussed. The photoluminescence measurements show that the optical properties achieved the best results at pH = 9 for GdVO4:Eu3+(5 mol%), Bi3+(1 mol%) or pH = 7 for GdVO4:Eu3+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号