共查询到20条相似文献,搜索用时 15 毫秒
1.
Composites based on epoxy resin and differently aligned multi-walled carbon nanotube (MWCNT) sheets have been developed using hot-melt prepreg processing. Aligned MWCNT sheets were produced from MWCNT arrays using the drawing and winding technique. Wavy MWCNTs in the sheets have limited reinforcement efficiency in the composites. Therefore, mechanical stretching of the MWCNT sheets and their prepregs was conducted for this study. Mechanical stretching of the MWCNT sheets and hot stretching of the MWCNT/epoxy prepregs markedly improved the mechanical properties of the composites. The improved mechanical properties of stretched composites derived from the increased MWCNT volume fraction and the reduced MWCNT waviness caused by stretching. With a 3% stretch ratio, the MWCNT/epoxy composites achieved their best mechanical properties in this study. Although hot stretching of the prepregs increased the tensile strength and modulus of the composites considerably, its efficiency was lower than that of stretching the MWCNT sheets. 相似文献
2.
High performance poly(etherimide) (PEI)-based nanocomposites (PNs) with multi-walled carbon nanotubes (MWCNT) were obtained via melt mixing. To achieve this, PEI was mixed with a well-dispersed commercial poly(butylene terephthalate) (PBT)/MWCNT master-batch in an attempt to transfer the dispersed MWCNTs to a PEI matrix. A broad and homogeneous dispersion of MWCNTs throughout the PEI-based matrix was obtained. The electrical percolation threshold (pc) was reached at only 1 wt.% MWCNT. This pc showed a power law dependence of conductivity on filler concentration, with a critical exponent of 1.92, which indicates that a three dimensional percolated structure was achieved. The glass transition temperature and the pressure at the output end of the extruder decreased when the master-batch was added, indicating that the processability of PEI was improved. In addition to this, the modified PEI-based PNs presented ductile behaviour and an ameliorated (12% with 5 wt.% MWCNT) elastic modulus compared with pure PEI. 相似文献
3.
Jianwei ZhangDazhi Jiang 《Composites Science and Technology》2011,71(4):466-470
A modified method for interconnecting multi-walled carbon nanotubes (MWCNTs) was put forward. And interconnected MWCNTs by reaction of acyl chloride and amino groups were obtained. Scanning electron microscopy shows that hetero-junctions of MWCNTs with different morphologies were formed. Then specimens of pristine MWCNTs, chemically functionalized MWCNTs and interconnected MWCNTs reinforced epoxy resin composites were fabricated by cast moulding. Tensile properties and fracture surfaces of the specimens were investigated. The results show that, compared with pristine MWCNTs and chemically functionalized MWCNTs, the chemically interconnected MWCNTs improved the fracture strain and therefore the toughness of the composites significantly. 相似文献
4.
Bulk acoustic waves (BAWs) are used to align multi-walled carbon nanotubes (MWCNTs) in polymer composite materials. MWCNTs are first dispersed in the liquid state of a thermoset resin and aligned using standing BAWs. Cross-linking of the resin fixates the aligned MWCNTs in the polymer matrix material. We have quantified the alignment obtained with this method on the macro, micro, and nanoscale, and it is found to be similar to other alignment techniques such as stretching, slicing, and wet spinning. The elastic modulus and ultimate tensile strength of composite material specimens with aligned MWCNTs, fabricated using this technique, are evaluated and compared with specimens consisting of randomly oriented MWCNTs and resin material without MWCNTs. Different MWCNT loading rates are considered. The elastic modulus of composite material specimens with only 0.15 weight percent aligned MWCNTs is observed to be 44% higher than specimens with randomly oriented MWCNTs, and 51% higher than specimens without MWCNTs. However, further increasing the MWCNT loading rate does not significantly increase the elastic modulus and ultimate tensile strength, likely because of insufficient dispersion of MWCNTs in the thermoset matrix material. 相似文献
5.
A novel polypropylene (PP) nanocomposite was fabricated by the incorporation of intumescent flame retardant (IFR), carbon nanotubes (CNTs) and graphene into the PP matrix. Results from TEM indicate that IFR, CNTs and exfoliated graphene nanosheets are dispersed finely in the PP matrix, which is supported by the XRD analysis results. Thermogravimetric (TGA) results show that the addition of IFR, CNTs and graphene improved the thermal stability and the char yields of PP. The PP/IFR/CNTs/RGO nanocomposites, filled with 18 wt% IFR, 1 wt% CNTs and 1 wt% graphene, achieve the limiting oxygen index value of 31.4% and UL-94 V0 grade. Cone calorimeter data reveal that combustion behavior, heat release rate peak (PHRR) and average specific extinction area (ASEA) of PP decrease substantially when combination effects of IFR, CNTs and graphene intervene. For the PP/IFR/CNTs/RGO nanocomposites, the PHRR exhibits an 83% reduction and the time of ignition is delayed 40 s compared with neat PP. 相似文献
6.
The polyurethane (PU) nanocomposites containing carbon nanotubes (CNTs) were prepared through in situ polymerization for the creep study. The results show that the presence of CNTs leads to a significant improvement of creep resistance of PU. However, this creep resistance does not increase monotonously with increase of CNT contents because it is highly dependent on the dispersion of CNTs. Several theoretical models were then used to establish the relations between CNT dispersion and final creep and creep–recovery behaviors of nanocomposites. The as-obtained viscoelastic and viscoplastic parameters of PU matrix and structural parameters of CNTs further confirmed the retardation effect by CNTs during creep of the nanocomposite systems. Besides, the time–temperature superposition (TTS) principle was also employed in this work to make a further evaluation on the creep of PU/CNT nanocomposites with long-term time scale. 相似文献
7.
Transparent conductive composites can be achieved from PVDF–MWCNT at very low concentration of MWCNT. These composites show different degree of UV–Visible radiation absorption depending on MWCNT concentration in composites. The composition dependent dielectric properties and AC conductivity were also measured for these composites. Properties like AC conductivity, dielectric constant and loss are increasing with filler concentration. The variations of DC conductivity against composition and temperature are also reported. The electrical hysteresis and electrical set are observed for PVDF–MWCNT composites when subjected to heating–cooling cycle. The validity of different theoretical models depicting percolation threshold with respect to DC conductivity was tested for these composites. 相似文献
8.
Jiawen Xiong Zhen Zheng Wenhui Song Dongsheng Zhou Xinling Wang 《Composites Part A》2008,39(5):904-910
Methylene-bis-ortho-chloroanilline (MOCA), an excellent cross-linker widely used to prepare cured polyurethane (PU) elastomers with high performance, was used to modify a multi-walled carbon nanotube. PU/carbon nanotube (CNT) nanocomposites were prepared by incorporation of the MOCA-grafted CNT into PU matrix. Fourier transform infrared spectra have shown that the modified CNTs have been linked with PU matrix. The microstructure of composites was investigated by Field-Emission Scanning Electron Microscopy. The results of Dynamic Mechanical Thermal Analysis and Differential Scanning Calorimetry have investigated the grafted CNTs as cross-linker in the cured composites. The studies on the thermal and mechanical properties of the composites have indicated that the storage modulus and tensile strength, as well as glass transition temperature and thermal stability are significantly increased with increasing CNT content. 相似文献
9.
The present work studies the thermomechanical properties and infrared light-induced shape memory effect (SME) in shape memory polymer (SMP) nanocomposite incorporated with carbon nanotube (CNT) and boron nitride. The combination of CNT and boron nitride results in higher glass transition temperature, mechanical strength and thermomechanical strength. While CNTs are employed to improve the absorption of infrared light and thermally conductive property of SMP, boron nitrides facilitate heat transfer from CNTs to the polymer matrix and thus to enable fast response. A unique synergistic effect of CNT and boron nitride was explored to facilitate the heat transfer and accelerate the infrared light-induced shape recovery behavior of the shape memory polymeric nanocomposite. 相似文献
10.
The development of shape memory polymers (SMPs) has gained remarkable attention due to their wide range of applications, from biomedical to electromechanical. In this work, we have developed and optimized an electroactive SMP based on polyvinyl alcohol/multi-walled carbon nanotubes (PVA/MWNTs) composites. When a constant voltage of 60 V was applied to the optimized sample, the polymer shape could be recovered to the original form within 35 s. Different weight fractions of MWNT/PVA composites were prepared by using a simple solution blending and transitional solution casting method, and their microstructures, electrical conductivities, thermal conductivities, and electroactive shape memory properties were investigated. According to our systematic analysis, the enhanced performance can be attributed to the reinforcement of MWNTs that led to the improved electrical and thermal conductivities of the PVA matrix. 相似文献
11.
In this study, carbon fiber (CF) reinforced polyamide 6 (PA6) composites were prepared by using melt mixing method. Effects of fiber length and content, on the mechanical, thermal and morphological properties of CF reinforced PA6 composites were investigated. Fiber length distributions of composites were also determined by using an image analyzing program. It was seen that the maximum number of fibers were observed in the range of 0–50 μm. Mechanical test results showed that, increasing CF content increased the tensile strength, modulus and hardness values but decreased strain at break values of composites. DSC results showed that Tg and Tm values of composites were not changed significantly with increasing CF content and length. However, heat of fusion and the relative degree of crystallinity values of composites decreased with ascending CF content. DMA results revealed that storage modulus and loss modulus values of composites increased with increasing CF content. 相似文献
12.
For the first time, electrospun carbon nanofibers (ECNFs, with diameters and lengths of ∼200 nm and ∼15 μm, respectively) were explored for the preparation of nano-epoxy resins; and the prepared resins were further investigated for the fabrication of hybrid multi-scale composites with woven fabrics of conventional carbon fibers via the technique of vacuum assisted resin transfer molding (VARTM). For comparison, vapor growth carbon nanofibers (VGCNFs) and graphite carbon nanofibers (GCNFs) were also studied for making nano-epoxy resins and hybrid multi-scale composites. Unlike VGCNFs and GCNFs that are prepared by bottom-up methods, ECNFs are produced through a top-down approach; hence, ECNFs are more cost-effective than VGCNFs and GCNFs. The results indicated that the incorporation of a small mass fraction (e.g., 0.1% and 0.3%) of ECNFs into epoxy resin would result in substantial improvements on impact absorption energy, inter-laminar shear strength, and flexural properties for both nano-epoxy resins and hybrid multi-scale composites. In general, the reinforcement effect of ECNFs was similar to that of VGCNFs, while it was higher than that of GCNFs. 相似文献
13.
We investigated the electromagnetic interference shielding effectiveness (EMI SE) of composites consisting of an unsaturated polyester matrix containing woven glass or carbon fibers that had been coated with multiwalled carbon nanotubes (MWCNTs). Composite panels consisting of fiber fabrics with various combinations of fabric type and stacking sequence were fabricated. Their EMI SE was measured in the frequency range of 30 MHz–1.5 GHz. The underlying physics governing the EMI shielding mechanisms of the materials, namely, absorption, reflection, and multiple reflections, was investigated and used in analytical models to predict the EMI SE. Simulation and experimental results showed that the contributions of reflection and absorption to EMI shielding is enhanced by sufficient impedance mismatching, while multiple reflections have a negative effect. For a given amount of MWCNTs in the glass-fiber–reinforced composite, coating the outermost, instead of intermediate, glass fiber plies with MWCNTs was found to maximize the conductivity and SE. 相似文献
14.
The electrical conductivity of graphene, multi-wall carbon nanotubes, carbon black nanopowders and graphite powder is characterized using paper-like films and by means of powder compression. The large difference in surface area of these materials results in different packing density and number of contact spots, influencing the macroscopic conductivity of the compacts during powder compression. The results are compared with the percolation threshold and final conductivity of polypropylene (PP) composites, using latex technology for the incorporation of the carbon fillers in the polymer. Even though the PP composites produced in this work exhibit percolation thresholds as low as 0.3 wt.%, the final conductivity for all the composites is below 1.5 S/m. Reasons why the high value of ∼103 S/m, which is obtained for graphene- and nanotube-based paper films or graphite compacts, is not reached for the composites are investigated. 相似文献
15.
Niels De Greef Larissa Gorbatikh Stepan V. Lomov Ignaas Verpoest 《Composites Part A》2011,42(11):1635-1644
The study investigates the effect of carbon nanotubes (CNTs) on the damage development in a woven carbon fiber/epoxy composite under quasi-static tension in the bias direction. The composite is produced by the resin transfer molding and contains 0.25 wt.% of CNTs in the matrix. The tensile tests are carried out till different strain levels and are accompanied with acoustic emission (AE) registration. The nano-modified composite possesses a higher stiffness and strain-to-failure. It also exhibits a significantly increased AE activity, both in terms of the number of events and the energy level, but reveals a lower crack density. The combined analysis of the AE data and X-ray images indicates that in the nano-modified composite cracks progress through the material in smaller jumps than in the virgin composite. The crack faces in the composite with CNTs also display a fine web of secondary fractures, which is not detected in the virgin composite. 相似文献
16.
The microstructure, mechanical strength, dielectric properties, Doppler broadening measurements and positron life time studies of the composites containing multi walled carbon nanotubes (MWCNTs) and natural rubber (NR) are investigated. The uniform distribution of MWCNTs in the elastomer medium is studied by Raman spectroscopy and the electron microscopy images show the composite’s internal microstructure. Free volume sizes and interstitial mesopore sizes of the nanocomposites are determined by positron annihilation lifetime spectroscopy (PALS). PALS investigates the influence of the nanotubes in regulating the interphase nanoscale character. Strong interfacial interaction causes an apparent reduction of the free-volume fraction of NR probably by depressing the formation of free-volume holes in the interfacial region. The mechanical percolation and percolation observed from the dielectric measurements are correlated with the life time values. It is established that the sub-nano level free volumes and nano level structure of the composites have significant roles in regulating the mechanical properties. 相似文献
17.
Carbon nanostructures were synthesized via a novel solvothermal reaction between ferrocene and sulfur. Carbon nanostructures were then added to poly styrene (PS) matrix. The thermal stability behavior of PS filled with carbon nanostructures were investigated by thermogravimetric analysis (TGA). Nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, energy-dispersive X-ray (EDS) analysis and atomic force microscopy (AFM). The flame retardancy behavior of PS–carbon was studied by UL-94 analysis. 相似文献
18.
Composite materials have been widely used in several engineering applications. However, there are very few studies about the effects of nanoclays on the impact strength of laminates after exposure to the fire. Therefore, this paper intends to study this subject and the impact performance was analysed by low velocity impact tests carried out at different incident impact energy levels. For better dispersion and interface adhesion matrix/clay, nanoclays were previously subjected to a silane treatment appropriate to the epoxy resin. The exposure to the fire decreases the maximum load and increases the displacement in comparison with the respective values obtained at room temperature. Mathematical relationships are proposed to estimate the maximum impact force and displacement, based on the total impact energy and flexural stiffness. Finally, a decrease of the elastic recuperation can be found, independently of the benefits introduced by the nanoclays. 相似文献
19.
20.
Shape-memory polymers (SMPs) have the capacity to return large strains by external stimuli. Among various SMPs, shape-memory epoxy has received considerable attention because of its superior mechanical and thermal properties as well as excellent shape-memory performance. In this study, short glass fibre-reinforced shape-memory hydro-epoxy composites are developed to improve further the mechanical property of shape-memory epoxy resin. The thermomechanical and shape-memory properties of the developed composite materials are investigated by dynamic mechanical analysis, bend test and shape recovery test. The results indicate that the glass modulus and bend strength of the developed composite materials initially increase and then slightly decrease with increasing short glass fibre content. The glass transition temperature of the developed composite materials does not change with increasing short glass fibre. When the short glass fibre content is less than 4.5 wt.%, full recovery can be observed after only several minutes at different temperatures. The shape-memory property of the composite materials is not affected greatly. However, when the short glass fibre content is more than 4.5 wt.%, the material would be destroyed after deformation. 相似文献