首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This paper aims at investigating the hybridisation effect on the diffusion kinetic and the tensile mechanical behaviour of flax–glass fibres reinforced epoxy composites. For this purpose, hybrid composites composed of flax and glass fibre laminates with different stacking sequences were consolidated by compression moulding and subjected to environment ageing. The obtained results show that the water uptake and the diffusion coefficient are clearly reduced by the addition of glass fibre layers in flax laminate. The ageing conditions performed show that the flax–glass hybridisation presents a positive effect in a wet environment at low temperatures (∼20 °C) in the Young’s modulus and the tensile strength. For example, the Young’s modulus fell by 50% and 41% for hybrid laminates with 6% and 11% of glass fibres, and by 67% for the Flax laminate. However, the flax–glass hybridisation was not necessarily a relevant choice when the hybrid laminates were exposed in a wet environment at high temperatures. Indeed, at 55 °C, this hybridisation had a negative effect on the tensile strength and on the specific tensile strength.  相似文献   

2.
Unidirectional flax/polyethylene terephthalate composites are manufactured by filament winding, followed by compression moulding with low and high consolidation pressure, and with variable flax fibre content. The experimental data of volumetric composition and tensile stiffness are analysed with analytical models, and the composite microstructure is assessed by microscopy. The higher consolidation pressure (4.10 vs. 1.67 MPa) leads to composites with a higher maximum attainable fibre volume fraction (0.597 vs. 0.530), which is shown to be well correlated with the compaction behaviour of flax yarn assemblies. A characteristic microstructural feature is observed near the transition stage, the so-called local structural porosity, which is caused by the locally fully compacted fibres. At the transition fibre weight fraction, which determines the best possible combination of high fibre volume fraction and low porosity, the high pressure composites show a higher maximum performance in terms of tensile stiffness (40 vs. 35 GPa). The good agreement with the model calculations (fibre compaction behaviour, and composite volumetric composition and mechanical properties), allows the making of a property diagram showing stiffness of unidirectional flax fibre composites as a function of fibre weight fraction for consolidation pressures in the range 0–10 MPa.  相似文献   

3.
Damage progression and failure characteristics of open‐hole flax fibre aluminium laminate (flax‐FML) specimens subjected to quasi‐static tensile or tension‐tension fatigue loading were experimentally investigated. Notched and unnotched flax‐FML composites exhibited brittle fracture with little or no fibre pull‐out and minimal delamination at the aluminium/adhesive interface. The flax‐FMLs were tested to failure under tension‐tension fatigue loading conditions (R ratio of 0.1; frequency of 10 Hz; applied fatigue stresses ranging between 30% and 80% of the respective ultimate tensile strength values). The fatigue cycles to failure decreased with the increase in the applied fatigue stress and hole diameter. A phenomenological modelling technique was developed to evaluate the fatigue life of an open‐hole flax‐FML composite. Fatigue tests on specimens subjected to a maximum load equivalent to 35% of the respective tensile failure strength were interrupted at around 85% of the corresponding fatigue life. The accumulated fatigue damage in these specimens was characterised using X‐ray computed tomography. For benchmarking purposes, the fatigue performance and related damage progression in the flax‐FML composite were compared with those of the glass‐FMLs.  相似文献   

4.
Mechanical properties of aligned long harakeke fibre reinforced epoxy with different fibre contents were evaluated. Addition of fibre was found to enhance tensile properties of epoxy; tensile strength and Young’s modulus increased with increasing content of harakeke fibre up to 223 MPa at a fibre content of 55 wt% and 17 GPa at a fibre content of 63 wt%, respectively. The flexural strength and flexural modulus increased to a maximum of 223 MPa and 14 GPa, respectively, as the fibre content increased up to 49 wt% with no further increase with increased fibre content. The Rule of Mixtures based model for estimating tensile strength of aligned long fibre composites was also developed assuming composite failure occurred as a consequence of the fracture of the lowest failure strain fibres taking account porosity of composites. The model was shown to have good accuracy for predicting the strength of aligned long natural fibre composites.  相似文献   

5.
A number of factors impede the direct translation of fibre properties from plant crop species to natural fibre composites. Commercially available fibre extraction processes introduce defects and degrade the mechanical properties of fibres. This study reports on a novel image based approach for investigating the effect of fibre extraction processes on flax fibre bundle strength. X-ray micro Computed Tomography (μCT) was coupled with uniaxial tensile testing to measure the in-situ fibre bundle cross-section area and tensile strength in flax plant stems. The mean tensile strength result was 50% higher than that of the fibres extracted through the standard commercial process. To minimize fibre damage during fibre extraction, a pre-treatment was proposed via saturating flax plant stems in 35% aqueous ammonia solution. By environmental scanning electron microscopy (ESEM), it was evident that ammonia treatment significantly reduced the extent of damage in flax fibre knots and the optimum treatment parameter was identified.  相似文献   

6.
Low viscosity thermoset bio-based resin was synthesised from lactic acid, allyl alcohol and pentaerythritol. The resin was impregnated into cellulosic fibre reinforcement from flax and basalt and then compression moulded at elevated temperature to produce thermoset composites. The mechanical properties of composites were characterised by flexural, tensile and Charpy impact testing whereas the thermal properties were analysed by dynamic mechanical thermal analysis (DMTA) and thermogravimetric analysis (TGA). The results showed a decrease in mechanical properties with increase in fibre load after 40 wt.% for the neat flax composite due to insufficient fibre wetting and an increase in mechanical properties with increase fibre load up to 60 wt.% for the flax/basalt composite. The results of the ageing test showed that the mechanical properties of the composites deteriorate with ageing; however, the flax/basalt composite had better mechanical properties after ageing than the flax composite before ageing.  相似文献   

7.
The impact and flexural post-impact behaviour of ternary hybrid composites based on epoxy resin reinforced with different types of fibres, basalt (B), flax (F), hemp (H) and glass (G) in textile form, namely FHB, GHB and GFB, has been investigated. The reinforcement volume employed was in the order of 21–23% throughout. Laminates based exclusively on basalt, hemp and flax fibres were also fabricated for comparison. Hybrid laminates showed an intermediate performance between basalt fibre reinforced laminates on the high side, and flax and hemp fibre reinforced laminates on the low side. As for impact performance, GHB appears to be the worst performing hybrid laminate and FHB slightly overperforms GFB. In general, an increased rigidity can be attributed to all hybrids with respect to flax and hemp fibre composites. The morphological study of fracture by SEM indicated the variability of mode of fracture of flax and hemp fibre laminates and of the hybrid configuration (FHB) containing both of them. Acoustic emission monitoring during post-impact flexural tests confirmed the proneness to delamination of FHB hybrids, whilst they were able to better withstand impact damage than the other hybrids.  相似文献   

8.
Thermoplastics reinforced by natural fibres are mainly used for fitting-up products in the automotive industry. The aim of this work is to study the tensile properties of natural fibre-biopolymer composites in order to determine whether or not, biocomposites may replace glass fibre reinforced unsaturated polyester resins. The materials used are flax fibre, polylactic acid (PLA), l-polylactide acid (PLLA), poly(3-hydroxylbutyrate) (PHB), polycaprolactone and starch thermoplastic (MaterBi® Z), poly(butylene succianate) (PBS) and poly(butylene adipate-co-terephtalate) (PBAT). The tensile properties of the flax fibres have already been determined [C. Baley, Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase, Comp Part A 2002;33:939–948]. The composites are manufactured using a film stacking technique. After studying the processing parameters, these are then adapted to each thermoplastic composites. Test samples are cut out from the composites to test their mechanical properties under tensile loading conditions. These tensile properties are then compared to those of similar polypropylene flax composites. Preliminary results show that the tensile properties are improved with the fibre volume fraction. The tensile strength and Young’s modulus of PLLA and PLA flax composites are greater than those of similar PP/flax fibre composites. The specific tensile strength and modulus of flax fibre/PLLA composite have proved to be very close to those of glass fibre polyester composites.  相似文献   

9.
In recent years, the use of flax fibres as reinforcement in composites has gained popularity due to an increasing requirement for developing sustainable materials. Flax fibres are cost-effective and offer specific mechanical properties comparable to those of glass fibres. Composites made of flax fibres with thermoplastic, thermoset, and biodegradable matrices have exhibited good mechanical properties. This review presents a summary of recent developments of flax fibre and its composites. Firstly, the fibre structure, mechanical properties, cost, the effect of various parameters (i.e. relative humidity, various physical/chemical treatments, gauge length, fibre diameter, fibre location in a stem, oleaginous, mechanical defects such as kink bands) on tensile properties of flax fibre have been reviewed. Secondly, the effect of fibre configuration (i.e. in forms of fabric, mat, yarn, roving and monofilament), manufacturing processes, fibre volume, and fibre/matrix interface parameters on the mechanical properties of flax fibre reinforced composites have been reviewed. Next, the studies of life cycle assessment and durability investigation of flax fibre reinforced composites have been reviewed.  相似文献   

10.
As part of a study of the interfacial bond in epoxy resin-carbon fibre composites, scanning secondary ion mass spectrometry (Scanning SIMS) was used to study fracture surfaces parallel to the fibre direction in unidirectional composites and the way in which these surfaces varied with an increasing level of fibre surface treatment (electrolytic oxidation). Interlaminar shear strength (ILSS) and tensile strength of the composites was also measured. Chemical maps obtained, using Scanning SIMS from the transverse fracture surfaces showed that at low levels of fibre surface treatment failure occurred at the fibre-resin interface or within the fibre, whilst at the higher levels of surface treatment failure took place largely within the resin leaving a thin overlayer adhering to the fibre. It is proposed that this failure within the resin explains the presence of the plateau observed in the ILSS against surface treatment curve at higher levels of treatment. Over the range of fibre surface treatments in the study, variations in the level had little effect on the tensile strength of the composites.  相似文献   

11.
This paper presents an experimental study on the static and dynamic mechanical properties of nonwoven based flax fibre reinforced polypropylene composites. The effect of zein modification on flax fibres is also reported. Flax nonwovens were treated with zein coupling agent, which is a protein extracted from corn. Composites were prepared using nonwovens treated with zein solution. The tensile, flexural and impact properties of these composites were analysed and the reinforcing properties of the chemically treated composites were compared with that of untreated composites. Composites containing chemically modified flax fibres were found to possess improved mechanical properties. The viscoelastic properties of composites at different frequencies were investigated. The storage modulus of composites was found to increase with fibre content while damping properties registered a decrease. Zein coating was found to increase the storage modulus due to enhanced interfacial adhesion. The fracture mechanism of treated and untreated flax reinforced polypropylene composites was also investigated from scanning electron microscopic studies.  相似文献   

12.
This study investigates the influence of the physical structure of flax fibres on the mechanical properties of polypropylene (PP) composites. Due to their composite-like structure, flax fibres have relatively weak lateral bonds which are in particular present in flax fibres that are often used in natural fibre mat reinforced thermoplastics (NMT). These weak bonds can be partly removed by combing the fibres. In order to study the influence of the physical structure of flax fibres on NMT tensile and flexural properties, uncombed and combed flax fibre reinforced PP composites were manufactured via a wet laid process. The influence of improved fibre-matrix adhesion was studied using maleic-anhydride grafted PP. Results indicated that the flax physical structure has a significant effect on flax-PP composite properties and that the flax fibre reinforced PP properties are similar to values predicted with existing micromechanical models. The tensile modulus of flax-PP composites can fairly compete with commercial glass mat reinforced thermoplastic (GMT) modulus, the strength, however, both tensile and flexural, can not. In order to rise the strength of flax fibre reinforced PP composites to the level of GMT strength, the flax fibres have to be further isolated to elementary flax fibres.  相似文献   

13.
This study investigated the flexural behaviour of plain concrete (PC) and coir fibre reinforced concrete (CFRC) beams externally strengthened by flax fabric reinforced epoxy polymer (FFRP) composites. PC and CFRC beams without and with FFRP (i.e. 2, 4 and 6 layers) reinforcement were tested under three- and four-point bending. The microstructures of coir fibre, coir/cement matrix, flax/epoxy matrix, and FFRP/concrete interfaces were analysed using scanning electronic microscope (SEM). Test results indicated that the peak load, flexural strength, deflection and fracture energy of both PC and CFRC specimens enhanced proportional to an increase of FFRP layers. Coir further increased load, strength and energy of the specimens remarkably. It was also found that the thickness and coir influenced the failure modes while the test method influenced the load and energy of the specimens remarkably. SEM studies showed effective bond at coir/cement, flax/epoxy and FFRP/concrete interfaces. Therefore, it concluded that natural FFRP composites can be used to repair or retrofit existing concrete structures.  相似文献   

14.
Plant-based natural fibres are often used as a reinforcing material for environmentally friendly green composites. Especially, the form of slivers of natural fibres is anticipated for increasing their stiffness and strength. However, the sliver structure has fluctuations in fibre orientation, which decreases their mechanical properties. This paper describes the effects of such fibre orientation fluctuation on tensile properties of fibre-reinforced fully green composites. The composites were reinforced with slivers of high-strength flax fibres, for which a fabrication method called ‘direct method’ was applied. To quantify the morphology of the fibre orientation, fibre orientation angles were measured on fine segments, which were divided into 1 mm × 1 mm squares on a photograph of the whole composite surface. Although it is well-known that tensile strength of unidirectional composites decreases with increasing fibre orientation angle, the tensile strength obtained here did not show any appreciable relation to the statistical properties of measured fibre orientation angles such as average and standard deviation. The concept of two-dimensional (2D) autocorrelation was used in the present study to express the degree of similarity between fibre orientation angles in two different local areas. Results show that, if high 2D autocorrelation coefficients occupy more area on a composite surface, then this composite possesses more regular fibre orientation and tends to exhibit higher tensile strength. This tendency is stronger in the composites close to on-axis alignment, whereas it became weak in the off-axis composites angled more than 15° because of shear fracture.  相似文献   

15.
Polypropylene (PP) composites reinforced with recycled carbon fibre have been prepared through extrusion compounding and injection moulding. The reinforcing potential of the recycled fibre was increased by improving the interfacial adhesion between the fibre and PP matrix and this was done by the addition of maleic anhydride grafted polypropylene (MAPP) coupling agents. Three MAPP couplers with different molecular weights and maleic anhydride contents were considered. The effects on the mechanical properties of the composite were studied, and scanning electron microscopy (SEM) was used to study the fracture morphology of the tensile specimens. It was observed that with the addition of MAPP the interfacial adhesion was improved as fewer fibres were pulled-out and less debonding was seen. A microbond test was performed and a significant improvement in interfacial shear strength was measured. This resulted in composites with higher tensile and flexural strengths. The maximum strength was achieved from MAPP with the highest molecular weight. Increased modulus was also achieved with certain grades of MAPP. It was also found that the composite impact strength was improved significantly by MAPP, due to a higher compatibility between the fibre and matrix, which reduced crack initiation and propagation.  相似文献   

16.
The mechanical behaviour of fabric-reinforced composites can be affected by several parameters, such as the properties of fabrics and matrix, the fibre content, the bond interphase and the anchorage ability of fabrics. In this study, the effects of the fibre type, the fabric geometry, the physical and mechanical properties of fabrics and the volume fraction of fibres on the tensile stress–strain response and crack propagation of cementitious composites reinforced with natural fabrics were studied. To further examine the properties of the fibres, mineral fibres (glass) were also used to study the tensile behaviour of glass fabric-reinforced composites and contrast the results with those obtained for the natural fabric-reinforced composites. Composite samples were manufactured by the hand lay-up moulding technique using one, two and three layers of flax and sisal fabric strips and a natural hydraulic lime (NHL) grouting mix. Considering fabric geometry and physical properties such as the mass per unit area and the linear density, the flax fabric provided better anchorage development than the sisal and glass fabrics in the cement-based composites. The fabric geometry and the volume fraction of fibres were the parameters that had the greatest effects on the tensile behaviour of these composite systems.  相似文献   

17.
Unidirectional (UD) carbon fibre reinforced polymers offer high specific strength and stiffness but they fail in a catastrophic manner with little warning. Gas-texturing and non-constrained annealing were used to introduce fibre waviness into UD polyamide 12 composites produced by wet-impregnation hoping to produce composites with a more gradual failure mode and increased failure strain. Both methods increased the variation of fibre alignment angle compared to the control samples. The composites containing wavy fibres exhibited a stepwise, gradual failure mode under strain controlled uniaxial tension rather than a catastrophic failure, observed in control samples. Gas-texturing damaged the fibres resulting in a decrease of the tensile strength and strain to failure, which resulted in composites with lower tensile strength and ultimate failure strain than the control composites. Non-constrained annealing of carbon fibre/PA-12 produced wavy fibre composites with ultimate failure strain of 2%, significantly higher than 1.6% of the control composite.  相似文献   

18.
Edwin Bodros 《Materials Letters》2008,62(14):2143-2145
Developing new natural fibre composites is the focus of many studies today. Indeed, they are made out of renewable resources and, therefore, have a lower environmental impact in comparison to mineral fibre composites. The mechanical performances of stinging nettle fibres are measured and compared to flax and other lignocellulosic fibres. The stress/strain curve of stinging nettle fibres (Urtica dioica) shows they have a linear behaviour. The average tensile properties are a Young's modulus equal to 87 GPa, a tensile strength equal to 1594 MPa, and a strain at failure equal to 2.11%.  相似文献   

19.
This paper investigates the compression properties of square and triangular honeycomb core materials based on co-mingled flax fibre reinforced polypropylene (PP) and polylactide (PLA) polymers. Initial testing focused on investigating the sensitivity of the tensile properties of the composites to variations in processing conditions. Following this, a range of triangular and square honeycomb structures were manufactured using a simple slotting technique. These structures were tested in compression at quasi-static rates of strain and their strength and specific energy absorption characteristics were determined. Finally, a finite element analysis was undertaken to accurately predict the strength, energy-absorbing characteristics, buckling behaviour and failure modes of these natural fibre based core materials.  相似文献   

20.
Moisture absorption and durability in water environment are major concerns for natural fibres as reinforcement in composites. This paper presents a study on the influence of water ageing on mechanical properties and damage events of flax–fibre composites, compared with glass–fibre composites. The effects of the immersion treatment on the tensile characteristics, water absorption and acoustic emission (AE) recording were investigated. The water absorption results for the flax–fibre composites show that the evolution appears to be Fickian and the saturated weight gain is 12 times as high that the glass–fibre composites. Decreasing continuously with increasing water immersion time, the tensile modulus and the failure strain of flax–fibre composites are hardly affected by water ageing whereas only the tensile stress is reduced regarding the glass–fibre composites. AE indicate that matrix–fibres interface weakening is the main damage mechanism induced by water ageing for both composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号