首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Composites Part A》2007,38(8):1860-1871
‘Melding’ is a novel in situ method for joining thermosetting composite structures, without the need of adhesives. Laminate joining is achieved using uncrosslinked resin matrix of the pre-preg. This study used Hexply914C pre-preg material to characterize melded CFRP structures produced using the melding method. A designated area of a laminate was maintained at temperatures below 40 °C retaining uncured (B-staged) material, while the remainder of the laminate was cured at 175 °C. After a 2.5 h cure cycle, the cured region showed a high degree of cure (0.88) and glass transition temperature (176 °C). The uncured area of the same laminate was cured in a second stage, simulating an in situ melded joint. By controlling the temperature and duration of the intermediate dwell and affecting minimum viscosity values prior to final cure, low values of porosity (<0.5%) were achieved. The mechanical properties of the resulting joint were consistent throughout the melded laminate. Flexural strength (1600 MPa), flexural modulus (100–105 MPa) and short beam strength (105–115 MPa) values observed where equivalent or greater than those found in the recommended autoclave cured control specimens. After the entire laminate was post cured, glass transition temperatures of 230 °C (peak tan δ) were observed in all areas of the laminate.  相似文献   

2.
Experiments have tracked the ambient gelation of a series of hydrophilic hyaluronic acid (HA) resins grafted with glycidyl methacrylate (GM) and photopolymerized as a function of dose. The resin mixtures range in GMHA concentration between 0.5 and 1.5% w/w in phosphate buffered saline (PBS). Illuminated at 20 mW/cm2, the dynamic viscosity (η(t)) has been tracked and characterized using the Boltzmann log-sigmoidal model. A gelled viscosity of ~ 10 Pa s was determined at 0.5% w/w which rose to ~ 50 Pa s at or above 1% w/w. More curing agent marginally increased the gel viscosity at each concentration. Time constants associated with viscosity advancement were shortest at [GMHA] = 1.0%; higher concentrations are attributed with lower quantum efficiency when illuminated. Subsequent frequency sweeps replicated already published work using similar GHMA concentrations in PBS. G′ values ranged from 100 to 500 Pa over the formulation range with expected sensitivity to GMHA and curing agent concentration. Overall, the sigmoidal model represented this advancing viscosity data well, and further analysis of the physical significance of these model parameters may help in understanding photopolymerization of this complicated formulation more broadly.  相似文献   

3.
The effects of extrusion processing temperature on the rheological, dynamic mechanical analysis and tensile properties of kenaf fiber/high-density polyethylene (HDPE) composites were investigated for low and high processing temperatures. The rheological data showed that the complex viscosity, storage and loss modulus were higher with high processing temperature. Complex viscosities of pure HDPE and 3.4 wt% composite with zero shear viscosity of ⩽2340 Pa s were shown to exhibit Newtonian behavior while composites of 8.5 and 17.5 wt% with zero shear viscosity ⩾30,970 Pa s displayed non-Newtonian behavior. The Han plots revealed the sensitivity of rheological properties with changes in processing temperature. An increase in storage and loss modulus and a decrease in mechanical loss factor were observed for 17.5 wt% composites at high processing temperature and not observed at low processing temperature. Processing at high temperature was found to improve the tensile modulus of composites but displayed diminished properties when processed at low processing temperature especially at high fiber content. At both low and high processing temperatures, the tensile strength and strain of the composite decreased with increased content of the fiber.  相似文献   

4.
This work aimed at characterizing the interface between dentin and the resin-infiltrated dentin made following the etching procedure that prepares for the bonding of tooth-colored restorations. The non-destructive measurement of fluid flow through the dentin–self-etch resin interface was followed repeatedly during a two year aging period. Two self-etch adhesive systems were selected for experiments on the evolution of permeability and evaluation of infrared spectral changes following the 24 month aging period. The adhesives contained water and a co-solvent, namely acetone for iBond, and t-butanol for Xeno V. For both adhesive systems, the permeability decreased during the first 3 months after etching, reaching values of ? 66.9 and ? 70.5% for iBond and Xeno V, respectively. Afterwards, the fluid flow slowly increased but still remained below 50% of the initial value following the 2-year aging period. The slow degradation of the resin–dentin interface, attributed to water impregnated collagen hydrolysis, is evidenced by these variations in fluid flow, and is also noted by the increase in water-related infrared absorption bands at 3300 cm? 1 and at 1600 cm? 1. The results are discussed in terms of co-solvent hydrophobicity, evaporation rate and viscosity together with resin infiltration depth and affinity for water.  相似文献   

5.
A room-temperature cure epoxy consisting of diglycidyl ether of bisphenol-F (DGEBF) and diethylene triamine (DETA) was modified with 26.5 wt.% and 63.5 wt.% octaglycidyl polyhedral oligomeric silsesquioxane (POSS) to investigate elevated temperature thermomechanical performance. Composites fabricated using vacuum assist resin transfer molding (VARTM) were compared to vinylester and epoxy standards. POSS modified matrices were low viscosity of 0.25–0.40 Pa s. Although Tg was 20% lower than vinylester, we observed an increase of >300% in 150 °C storage modulus, >50% in tensile modulus, >35% in flexural modulus, and the complete elimination of a heat distortion temperature (HDT) up to 200 °C. The matrices demonstrated an excellent balance of flow, wetting, and pot-life behaviors making them attractive alternatives for ambient cure marine applications.  相似文献   

6.
This study focused on the effects of rice husk ash (RHA) on the mechanical properties of roller compacted concrete (RCC) designed with original and reclaimed asphalt pavement (RAP) materials. The RCC mixes were produced by partial substitution of cement with RHA at varying amounts of 3% and 5%. Four aggregate combinations including the mix with original aggregate, coarse RAP + fine original aggregate, coarse original aggregate + fine RAP and total RAP were considered. The main experimental design consisted of the compressive strength and three points bending tests. Bending test was used to measure the modulus of rupture, material’s energy absorbency and analyse the fatigue response of RCC mixes. All tests were performed after 7, 28 and 120 days curing except the fatigue test that performed on 120 days specimens. Adding RHA resulted in higher optimum moisture content (OMC) and lower maximum dry density. Furthermore, adding RAP with different dimensions reduced the OMC and maximum dry density. The material’s flexibility improved upon replacing 3% cement by RHA. However, the energy absorbency reduced by increasing the RHA content to 5%. The fatigue life of RCC mixes containing RAP material was lower than the conventional one. Furthermore, replacing the coarse aggregate by RAP led to higher fatigue life than the fine aggregate. There was a strong relationship (R2 > 0.90) between the energy absorbency and fatigue response of RCC mixes. At higher stress ratios of 0.72, the mix with higher energy absorbency behaved better under repeated loadings. Besides, a reverse relationship was found between the fatigue life and material porosity. Adding 3% RHA reduced the porosity especially after 120 days curing and improved the fatigue resistance. However, the addition of RHA to 5% resulted in higher porosities and lower fatigue lives.  相似文献   

7.
Magnetic microspheres were prepared using a single step coaxial electrohydrodynamic atomization technique at ambient temperature and pressure, with poly(lactic-co-glycolic acid) as the coating and iron oxide (Fe3O4) nanoparticles dispersed in polyethylene glycol as the encapsulated material. The morphology and particle size distributions of the prepared magnetic microspheres were investigated by scanning electron microscopy. The particles were spherical with mean diameters ranging from ~ 2 μm to 18 μm, depending on the combination of processing parameters (flow rate and applied voltage). Analysis by infrared spectroscopy and focused ion-beam sectioning confirmed incorporation of iron oxide nanoparticles into the microspheres and the prepared samples were shown to be responsive to an applied magnetic field. This study demonstrates a convenient method for the preparation of nanoparticle loaded microspheres, which could be used potentially as transverse relaxation contrast agents in magnetic resonance imaging, as well as for magnetically guided drug delivery.  相似文献   

8.
《Composites Science and Technology》2006,66(11-12):1749-1755
A high performance resin system with good dielectric properties for resin transfer molding (RTM), HERTM, was developed. HERTM is a hybrid polymer network based on o,o′-diallyl bisphenol A modified 4,4′-bismaleimidodiphenylmethane, and 1,1′-bis(4-cyanatophenyl)ethane. The processing characteristics, thermal, mechanical and dielectric properties of the system were studied, and the effect of differing stoichiometry of each component on the processing and performance parameters was discussed. Investigations show that the processing properties of the HERTM system was greatly depended on the stoichiometry of each component in formulations, while all the three formulations developed in this paper have good processing characteristics such as low viscosity (220–411 cps) at 90 °C, suitable pot life (>4 h) and good reactivity, and thus meet the needs of RTM technique. The cured HERTM system possesses excellent dielectric properties, much lower dielectric constant and dielectric loss than present commercially available bismaleimide systems. In addition, HERTM system exhibits very good thermal properties (glass transition temperature Tg  300 °C) and good mechanical properties, suggesting that HERTM system has great potential to be used as a matrix for advanced structural/functional composites.  相似文献   

9.
《Composites Part A》2007,38(2):461-468
The optimisation of New Zealand grown hemp fibre for inclusion in composites has been investigated. The optimum growing period was found to be 114 days, producing fibres with an average tensile strength of 857 MPa and a Young’s modulus of 58 GPa. An alkali treatment with 10 wt% NaOH solution at a maximum processing temperature of 160 °C with a hold time of 45 min was found to produce strong fibres with a low lignin content and good fibre separation. Although a good fit with the Weibull distribution function was obtained for single fibre strength, this did not allow for accurate scaling to strengths at different lengths. Alkali treated fibres, polypropylene and a maleated polypropylene (MAPP) coupling agent were compounded in a twin-screw extruder, and injection moulded into composite tensile test specimens. The strongest composite consisted of polypropylene with 40 wt% fibre and 3 wt% MAPP, and had a tensile strength of 47.2 MPa, and a Young’s modulus of 4.88 GPa.  相似文献   

10.
The uniaxial tensile and ratcheting-fatigue behaviors of the Z2CND18.12N austenitic stainless steel at room temperature were studied with different thermal aging periods (from 1 h to 500 h) at different thermal aging temperatures (500 °C and 700 °C). The thermal aging process resulted in apparent changes in the ratcheting behavior and the ratcheting-fatigue life. The precipitates under different thermal aging conditions were identified by SEM observation. Considering the deterioration of the material induced by thermal aging process, aging damage factor was introduced to predict the ratcheting-fatigue life, which resulted in good prediction for all the thermal aging conditions.  相似文献   

11.
The study describes the sol–gel synthesis of a new dental retrograde filling material partial stabilized cement (PSC)–gypsum by adding different weight percentage of gypsum (25% PSC + 75% gypsum, 50% PSC + 50% gypsum and 75% PSC + 25% gypsum) to the PSC. The crystalline phase and hydration products of PSC–gypsum were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis. The handling properties such as setting time, viscosity, tensile strength, porosity and pH, were also studied. The XRD and microstructure analysis demonstrated the formation of hydroxyapatite and removal of calcium dihydrate during its immersion in simulated body fluid (SBF) on day 10 for 75% PSC + 25% gypsum. The developed PSC–gypsum not only improved the setting time but also greatly reduced the viscosity, which is very essential for endodontic surgery. The cytotoxic and cell proliferation studies indicated that the synthesized material is highly biocompatible. The increased alkaline pH of the PSC–gypsum also had a remarkable antibacterial activity.  相似文献   

12.
The interaction between microstructure, mechanical, and frictional properties of a commercial brake lining material (BLM) was investigated in order to correlate them to braking performance. For this purpose, a Scanning Electron Microscope (SEM) with energy dispersive X-ray (EDX) mapping and spectrum were used to identify and analyze different constituents. The mechanical properties were determined using compression test. Relevant physical properties (density and porosity) were determined using standard test methods. The friction coefficient and wear behavior of the friction material on contact with the grey cast iron disc were established using a pad-on disc tribometer. The results have shown that the brake lining material contains phenol resin such as the matrix and other various ingredients, including silica, rock and mineral filler reinforcement, barium sulfate and carbon-rich particles as filler and brass particles as friction modifier. It had a varied amount and size up to 1 mm for brass particles. The density and porosity were 1.8 g cm−3 and 7%, respectively. The investigated material exhibited excellent mechanical properties in the normal solicitation direction. The average friction coefficient was about 0.65, whereas the friction coefficient was stable. The different actions of various ingredients in terms of their effects on the friction and wear behavior of the BLM could be related to their different bonding strengths with the resin matrix and their different abilities to form friction films (third-body layer) on the surfaces of the material and transfer films on the counterpart cast iron surface in relation to the surface temperature evolution and mechanical properties.  相似文献   

13.
To prepare organic gels at temperatures higher than normal boiling point of solvent, a method was developed using sol–gel polymerization in atmosphere saturated by vapor of solvent. To illustrate the advantages of proposed method, two series of gels were prepared using the conventional (Tcuring = 70 °C) and the high temperature (Tcuring = 140–170 °C) sol–gel polymerization. While no drying shrinkage was observed in our proposed method, 5–18% linear shrinkage occurred in conventional method depending on resin concentration in sol. Moreover, rising of curing temperature reduced the required time for preparation of organic gels from 5 days to lower than 5 h. The effects of processing parameters were investigated on physical and mechanical properties of organic xerogels. The results revealed that resin concentration significantly affects both density and compressive strength of final xerogels. While the curing temperature had no obvious effect on density, the raising of curing temperature significantly enhance the strength of organic xerogels. Carbon xerogels prepared by pyrolysis of novolac aerogels in inert atmosphere. The textures of the carbon xerogels were denser than corresponding organic xerogels, as evidenced by scanning electron microscopy (SEM) images. N2 adsorption tests indicated that carbon aerogels were mainly meso or macroporous depending on resin concentration in initial sol.  相似文献   

14.
Commercial resin matrixes of dental composites generally utilize diluents such as triethylene glycol dimethacrylate (TEGDMA) to reduce viscosity. However, the diluents exhibited adverse effects such as higher volume shrinkage and diminished mechanical properties of the dental composites. To overcome these adverse effects, developing of both inorganic fillers and resin monomers is necessary to improve the properties of dental composite. In this work, monodispersed silica microspheres with a diameter of 400 nm were synthesized via the Stöber process. The as-prepared particles were silanized with 3-methacryloxypropyltrimethoxysilane (γ-MPS) and used as fillers. Additionally, ethoxylated bisphenol A dimethacrylate (EBPADMA) with lower viscosity and higher molecular mass was introduced as a base resin monomer, which could be used as resin matrixes with a low amount of diluent. Various resin mixtures of EBPADMA, bisphenol A diglycidyl dimethacrylate (Bis-GMA) and TEGDMA were prepared, which had a similar filler content (71 wt.%), and their mechanical properties, volume shrinkage, depth of cure and light transmission were examined. Among them, the resin mixture containing 70% EBPADMA and 30% TEGDMA exhibited the best compression strength (238.1 ± 5.4 MPa), depth of cure (4.02 ± 0.04 mm) and the lowest volume shrinkage (2.27%).  相似文献   

15.
Half-cell structures of solid oxide fuel cells (SOFCs) with a thin and dense electrolyte layer of 8YSZ supported by a thick and porous NiO–8YSZ anode precursor structure were reduced in a gas mixture of 5% H2–95% Ar at 800 °C for selected time periods in order to fabricate cermets with desired microstructure and composition, and to study their effects on the elastic properties at ambient and reactive atmospheres. It appears that 2 h of exposure to the reducing conditions is enough to reduce ~80% of NiO with an enhanced porosity value of 35%. The Ni–8YSZ cermet phase formation in the anode was analyzed with X-ray diffraction (XRD) in correlation with its microstructure. The elastic properties were determined after the reduction, at room and elevated temperatures using the impulse excitation technique. At room temperature the decrease in the Young's modulus was about 44% (after 8 h of reduction) and can be attributed mainly to the changes in the microstructure, particularly the increase in porosity from ~12% to 37%. Young's moduli of the as-received precursor and reduced anodes were evaluated as a function of temperature in air and reducing atmosphere. The results were explained in correlation to the initial porosity, composition and oxidation of Ni at the elevated temperatures.  相似文献   

16.
Tensile testing was performed on a 4 mm thick sheet of the aluminum–lithium alloy AA2195 in T87 (solution treatment + water quenching + 7% cold work + peak aging) temper which was subjected to 7% cold working by combination of cold rolling and stretching, over a temperature range from ambient to liquid hydrogen (20 K) conditions. Properties were evaluated in longitudinal as well as transverse directions to characterize anisotropy with respect to strength and ductility. Strength and ductility were compared to the conventional aluminum alloy AA2219-T87, developed for similar cryogenic applications. Decreases in test temperature led to higher strengths with little or no change in ductility. As the temperature decreases, the differences between ultimate tensile strength as well as yield strength for two different combinations of cold roll and stretch studied in the present work, narrows down and become equal at 20 K.  相似文献   

17.
Capillary absorption kinetics of concrete–ethylene glycol system was studied with respect to concrete matrix porosity and liquid viscosity. Porosity of specimens was altered by air-entraining agents and superplasticizers. Liquid which doesn’t react with cement gel was chosen for the experiment in order to study the reasons for deviation from Lucas–Washburn equation observed in concrete–water system. Viscosity of ethylene glycol changes from ~23 to 2 mPa s in the temperature range from 20 to 100 °C. The values of the capillary coefficient were determined at 20, 60 and 100 °C using Neutron Radiography and were found to be in the range from ~1.5 to 4.9 mm h?1/2. The results show that the Lucas–Washburn equation in concrete–ethylene glycol system is valid only for ~25 h, which indicates that swelling and rehydration of cement gel are not the main reasons for deviation observed in concrete–water system.  相似文献   

18.
The principal aim of the present work was to investigate the effects of minor additions of nickel and zirconium on the strength of cast aluminum alloy 354 at ambient and high temperatures. Tensile properties of the as-cast and heat-treated alloys were determined at room temperature and at high temperatures (190 °C, 250 °C, 350 °C). The results show that Zr reacts only with Ti, Si and Al. From the quality index charts constructed for these alloys, the quality index attains minimum and maximum values of 259 MPa and 459 MPa, in the as-cast and solution-treated conditions; also, maximum and minimum values of yield strength are observed at 345 MPa and 80 MPa, respectively, within the series of aging treatments applied. A decrease in tensile properties of ∼10% with the addition of 0.4 wt.% nickel is attributed to a nickel–copper reaction. The reduction in mechanical properties due to addition of different elements is attributed principally to the increase in the percentage of intermetallic phase particles formed during solidification; such particles act as stress concentrators, decreasing the alloy ductility. Tensile test results at ambient temperatures show a slight increase (∼10%) in alloys with Zr and Zr/Ni additions, particularly at aging temperatures above 240 °C. Additions of Zr and Zr + Ni increase the high temperature tensile properties, in particular for the alloy containing 0.2 wt.% Zr + 0.2 wt.% Ni, which exhibits an increase of more than 30% in the tensile properties at 300 °C compared with the base 354 alloy.  相似文献   

19.
Effect of heat treatment on compressive properties of low alloy steel foams (Fe–1.75 Ni–1.5 Cu–0.5 Mo–0.6 C) having porosities in the range of 47.4–71.5% with irregular pore shape, produced by the space holder-water leaching technique in powder metallurgy, was investigated. Low alloy steel powders were mixed with different amounts of space holder (carbamide), and then compacted at 200 MPa. Carbamide in the green compacts was removed by water leaching at room temperature. The green specimens were sintered at 1200 °C for 60 min in hydrogen atmosphere. Sintered compacts were heat treated by austenitizing at 850 °C for 30 min and then quenched at 70 °C in oil and tempered at 210 °C for 60 min. In this porosity range, compressive yield strengths of as-sintered and heat treated specimens were 28–122 MPa and 18–168 MPa, respectively. The resultant Young’s moduli of the as-sintered and heat treated specimens were 0.68–3.12 GPa and 0.47–3.47 GPa, respectively. The heat treatment enhanced the Young’s modulus and compressive yield strength of the foams having porosities in the range of 47.4–62.3%, as a consequence of matrix strengthening. However, the compressive yield stress and Young’s modulus of the heat treated foam having 71.5% porosity were lower than that of the as-sintered foam’s, as a result of cracks in the structure. The results were discussed in light of the structural findings.  相似文献   

20.
In this study, the microstructure and mechanical properties of sintered AISI 316L stainless steel implant materials produced by powder metallurgy (P/M) method were investigated as a function of porosity amount. AISI 316L stainless steel powders were cold-pressed with 800 MPa pressure and sintered at 1200 °C, 1250 °C and 1300 °C for 30 min in a nitrogen atmosphere. The mechanical properties of the 316L implant samples were determined by tensile, fatigue and microhardness tests. Metallographic studies such as pore formation, and fractured surface analyses were performed by Scanning Electron Microscopy (SEM) and Light Optical Microscopy (LOM). The results of this study indicate that, irregular pore formation tendencies increase with an increase in porosity (%). Furthermore, an increase in porosity was shown to decrease the mechanical properties of sintered AISI 316L stainless steel. Sintering temperature is important parameter in decreasing the porosity of P/M materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号