首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Static stresses analysis of carbon nano-tube reinforced composite (CNTRC) cylinder made of poly-vinylidene fluoride (PVDF) is investigated in this study. Non-axisymmetric thermo-mechanical loads are applied on cylinder in presence of uniform longitudinal magnetic field and radial electric field. The surrounded elastic medium is modeled by Pasternak foundation because of its advantages to the Winkler type. Distribution of radial, circumferential and effective stresses, temperature field and electric displacements in CNTRC cylinder are determined based on Mori–Tanaka theory. The detailed parametric study is conducted, focusing on the remarkable effects of magnetic field intensity, elastic medium, angle orientation and volume fraction of carbon nano-tubes (CNTs) on distribution of effective stress. Results demonstrated that fatigue life of CNTRC cylinder will be significantly dependent on magnetic intensity, angle orientation and volume fraction of CNTs. Results of this research can be used for optimum design of thick-walled cylinders under multi-physical fields.  相似文献   

2.
    
For the first time, functionally graded carbon nanofiber/phenolic nanocomposites were designed and fabricated. The effect of compositional gradients on the flexural properties of functionally graded carbon nanofiber/phenolic composite beams was evaluated. Samples with four compositional gradients as well as a non-graded nanocomposite with the same total carbon nanofiber content and geometry were fabricated using a combination of powder stacking and compression molding techniques. Analytical and finite element models were both performed to investigate the effects of compositional gradients, boundary conditions, and external loadings on flexural properties of nanocomposite beams. Close agreement was observed between analytical solutions, finite element analyses and experiment. The morphology of the fracture surfaces was examined using a scanning electron microscope. The results showed that the flexural properties of carbon nanofiber/phenolic nanocomposites can be greatly improved by controlling the carbon nanofiber content across the thickness of the samples.  相似文献   

3.
    
The polyurethane (PU) nanocomposites containing carbon nanotubes (CNTs) were prepared through in situ polymerization for the creep study. The results show that the presence of CNTs leads to a significant improvement of creep resistance of PU. However, this creep resistance does not increase monotonously with increase of CNT contents because it is highly dependent on the dispersion of CNTs. Several theoretical models were then used to establish the relations between CNT dispersion and final creep and creep–recovery behaviors of nanocomposites. The as-obtained viscoelastic and viscoplastic parameters of PU matrix and structural parameters of CNTs further confirmed the retardation effect by CNTs during creep of the nanocomposite systems. Besides, the time–temperature superposition (TTS) principle was also employed in this work to make a further evaluation on the creep of PU/CNT nanocomposites with long-term time scale.  相似文献   

4.
    
  相似文献   

5.
    
Wrapping composite material around the defected pipe is a recent method in pipeline rehabilitation. ISO-24817 and ASME PCC-2 are the only available design codes for the design of this repair system. For the case when the corroded pipe contributes to the load carrying capacity, the two codes suggest calculating the repair thickness for a special design pressure based on the pipe diameter, remaining wall thickness, pipe and composite material properties, composite allowable strain, and the live pressure, which is the internal pressure in the pipe at the time of repair application. In this study, a range of design scenarios are modelled using analytical equations and finite element method in order to assess the validity of including live pressure in the design. Results indicate that the repair thickness is independent of the live pressure and hence an appropriate modification is proposed to the existing design equation.  相似文献   

6.
    
Understanding the reinforcing mechanisms should be meaningful for preparation of new polymer composites. The reinforcing mechanisms of the inorganic particulate-filled polymer composites were analyzed and discussed in the present paper, and concluded several reinforcing theories on the basis of the previous studies, such as interfacial adhesion reinforcing theory, filler inducing crystallization reinforcing theory, filler frame reinforcing theory, and synergistic reinforcing effect theory. The reinforcing effects should be related closely to the filler shape and size, in addition to the filler concentration and dispersion in the matrix. Consequently, to describe accurately the reinforcing mechanisms of the composites, two or more reinforcing theories should be used for the actual composite system, and one of among them should be usually as the major reinforcing mechanism. Finally, the quantitative characterization of the reinforcement was described.  相似文献   

7.
    
Because of the inductive impedance caused by steel meshes in traditional reinforced ballastless track slabs, the electrical properties, primarily the rail resistance and inductance, of jointless track circuits are affected by electromagnetic induction between the slabs and the electric current in the rail. This problem results in poor transmission performance throughout the track circuit. Insulating sleeves or cards between the steel meshes have been used to improve the insulation capability of steel meshes in slabs; however, they reduce the bonding performance between the steel bars and concrete. Because of the good insulation properties of fiber-reinforced polymer composite bars (FRPs) and steel-fiber reinforced polymer composite bars (SFCBs), these composite materials have shown potential to overcome this insulation problem. However, the structural performance of the ballastless track slabs reinforced by basalt fiber reinforced polymer composite bars (BFRPs) and SFCBs, which play a key role in the structure and transportation safety, needs to be investigated. In this paper, six ballastless track slabs reinforced with BFRPs, SFCBs, and steel bars were constructed and tested. The following results were obtained. (1) Shear failures were observed for all slabs, both the BFRP and SFCB slabs meet the load level requirements, and SFCBs reinforcements have higher strength utilization compared with BFRPs reinforcements. (2) The bond-quality of SFCBs and BFRPs reinforcements proved slightly poorer than that of the steel bars. Because of the good corrosion resistance of the FRP, the maximum crack width limits can be slightly larger than that of the RC slabs. (3) Bischoff’s equation was initially used to calculate the deflection of partially prestressed concrete slabs under service loads. The results demonstrated a good agreement between the theoretical and experimental analysis. (4) Considering the tensile stiffness, the modified ACI equation was used to calculate the slabs’ crack width and the theoretical and experimental results showed a good agreement.  相似文献   

8.
    
Textile composites manufactured using Resin Transfer Modeling (RTM) can offer advantages in some automotive applications including reduction in weight, while being relatively simpler to fabricate than standard laminated composites used for aerospace applications. However, one of the challenges that arise with these textile composite materials is that the mechanical properties are inherently dependent on the local and final (in-situ) architecture of the textile itself as a result of the molding and curing processes. While this provides additional latitude in the composite design process it also necessitates the development of analytical models that can estimate the mechanical properties of a textile composite based on the textile architecture and the properties of the manufactured component.In this paper, an analytical model is developed and its estimations are compared against experimental in-plane engineering properties for composites with various textile architectures. Results from the model are also compared against finite element (FE) based computational results. The microstructures of the 2D triaxially braided composite (2DTBC) studied were extensively characterized. The microstructure properties thus measured were used in the analytical model to estimate the mechanical properties. Uniaxial tension and V-notched rail shear tests were conducted on 2DTBC with different textile architectures. Good agreement between the analytical, computational, and experimental results were observed and are reported here. Furthermore, computational estimations of matrix mechanical properties are limited to the linear elastic range of a representative material volume (unit cell) and coupon data. Full mechanical response of larger 2DTBC structures, albeit of prime interest, is beyond the scope of this work and could be the focus of follow up studies.  相似文献   

9.
A fatigue life to the initiation of transverse cracks in cross-ply carbon fiber-reinforced plastic (CFRP) laminates has been predicted using properties of the fatigue strength of unidirectional CFRP in the 90° direction. In the experiments, unidirectional [90]12 laminates were used to obtain a plot of maximum stress versus number of cycles to breaking, and two types of cross-ply laminates of [0/904]S and [0/906]S were used to evaluate the initiation and multiplication of transverse cracks under fatigue loading. Transverse cracks were studied by optical microscopy and soft X-ray photography. Analytical and experimental results showed good agreement, and the fatigue life for transverse crack initiation in cross-ply laminates was predicted successfully from the fatigue strength properties of the unidirectional CFRP in the 90° direction. The prediction results showed a conservative fatigue life than the experimental results.  相似文献   

10.
    
The paper presents a novel methodology for the rapid identification of the water diffusion coefficients of composite materials. The methodology consists in employing a numerical parametric Proper Generalized Decomposition (PGD) method allowing incorporating the diffusion coefficients among the number of degrees of freedom. Compared to classical identification schemes, often based on Finite Element Method (FEM) iterations, the proposed method allows achieving consistent CPU time gain. The method is general and can be applied when diffusion anomalies take place or when diffusion–reaction coupling must be taken into account, moreover can deal with anisotropic materials. However, for the scope of illustration, in the present case, it is applied to the simple case of “classical diffusion” (Fick’s model with constant boundary conditions) and concerns isotropic materials.  相似文献   

11.
    
In random-chopped fiber-reinforced polymer (FRP) composites used as a retrofit material, a high volume fraction of voids is inevitable due to the manufacturing characteristics. In this paper, the mechanical characteristics and strengthening effectiveness of random-chopped FRP composites containing air porosity are investigated through experiments and numerical analysis. Coupon-shaped specimens with various material compositions were manufactured to examine the uniaxial tensile performance, and the air voids in the composites were measured by a microscope camera. In order to predict the overall performance of the composites, a micromechanical formulation that accounts for porosity was newly developed. The derived model was incorporated into a finite element (FE) code, and the model parameters were estimated by comparing uniaxial tensile test results for various systems of random-chopped FRP composites. In addition, concrete beams strengthened with the composites were produced to evaluate their load-carrying capacity. The FE predictions of the composite structures were then compared with experimental data to verify the predictive capability of the proposed numerical framework.  相似文献   

12.
High-velocity impact damage in CFRP laminates was studied experimentally and numerically. Part I of this study observed and evaluated near-perforation damage in the laminates and characterized the damage pattern experimentally. Part II predicts the extension of high-velocity impact damage based on smoothed particle hydrodynamics (SPH), which facilitates the analysis of large deformations, contact, and separation of objects. A cross-ply laminate was divided into 0° and 90° layers, and virtual interlayer particles were inserted to express delamination. The damage patterns predicted on the surfaces and cross-sections agreed well with the experiments. The analyzed delamination shape was similar to that resulting from a low-velocity impact, consisting of pairs of fan-shaped delaminations symmetric about the impact point. Finally, the mechanisms of high-velocity impact damage in CFRP laminates are discussed based on the observations and numerical analyses.  相似文献   

13.
Fiber Reinforced Polymer (FRP) composites are widely used for strengthening and conservation of historic masonry, even if research problems are still open. The mechanical behavior of masonry columns having a circular cross section, confined with glass and basalt FRP systems was studied in this paper. An extended experimental investigation is presented in order to show the results of axial compression tests on circular masonry columns built with natural blocks (calcareous stone). Active confinement was also studied by using a novel technique that employs Shape Memory Alloys (SMA). Totally twenty-four masonry columns were built, instrumented and tested. Different fibers, strengthening schemes and matrix/adhesive were used for the confinement of the columns.Unstrengthened columns were tested as reference specimens. Axial strain of the columns and tensile strain of the fibers in the direction perpendicular to the primary axis of the columns were measured with the applied load. Experimental results revealed the effectiveness of the FRP-confinement for masonry columns. Active confinement was found to be effective at early loading stages since an increased stiffness of the SMA/GFRP-confined columns was measured.A prediction of the compressive strength was obtained by using the model of the Italian guidelines CNR DT 200 (National Research Council) in order to compare the experimental results with the design approach, also for new types of fiber like basalt which were not included in the technical codes. Finally, the experimental results were compared with theoretical values calculated according with to two existing analytical models in order to test their effectiveness for the analyzed configurations.  相似文献   

14.
In recent years, both industrial and academic world are focussing their attention toward the development of sustainable composites, reinforced with natural fibres. In particular, among the natural fibres (i.e. animal, vegetable or mineral) that can be used as reinforcement, the basalt ones represent the most interesting for their properties. The aim of this review is to illustrate the results of research on this topical subject. In the introduction, mechanical, thermal and chemical properties of basalt fibre have been reviewed. Moreover, its main manufacturing technologies have been described. Then, the effect of using this mineral fibre as reinforcement of different matrices as polymer (both thermoplastic and thermoset), metal and concrete has been presented. Furthermore, an overview on the application of this fibre in biodegradable matrix composites and in hybrid composites has been provided. Finally, the studies on the industrial applications of basalt fibre reinforced composites have been reviewed.  相似文献   

15.
    
A new benzimidazolium derivative, the benzimidazolium-N,N′-hexadecane-2-hydroxy-ethyl bromide (Bz) featuring two geminal hexadecyl hydrophobic buttress has been synthesized and used for the functionalization of sodium montmorillonite (MMT-Na) via cationic exchange process. The resulting benzimidazolium-modified MMT (MMT-Bz) exhibits a large d-spacing of 3 nm between silicate layers and shows a high thermal stability compared to the commonly used clay modified alkyl ammonium salts (cloisite 20A and cloisite 20B). MMT-Bz was incorporated in high density polyethylene (HDPE) matrix via melt mixing method to produce HDPE/MMT-Bz nanocomposites. The microstructure and the morphology of these nanocomposites were studied by X-ray diffraction (XRD) and scanning electronic microscopy (SEM). The dispersion state of the organoclay within HDPE was monitored by UV–Vis spectroscopy and melt rheology. A more homogeneous dispersion or a greater content of the MMT-Bz in the matrix produced stronger solid-like and non-terminal behavior in the nanocomposites. Tensile properties and thermal stability were evaluated and discussed on the basis of the amount of clay incorporated within the nanocomposites. The intercalated structure in the nanocomposites, resulting from both the better dispersion/distribution of clay nano-platelets and their strong interaction with the polymer chains, provides the driving force to significantly enhance the HDPE properties.  相似文献   

16.
In this work multiwall carbon nanotubes (MWCNTs) dispersed in a polymer matrix have been used for strain sensing of the resulting nanocomposite under tensile loading. This was achieved by measuring the relative electrical resistance change (ΔR/R0) in conductive polyvinylidenefluoride (PVDF)/MWCNTs nanocomposites prepared by melt-mixing with varying filler content from 0.5 wt.% to 8 wt.%. Two main parameters were systematically studied. The PVDF/MWCNTs mixing procedure that results in a successful MWCNTs dispersion, and the effect of MWCNTs content on material’s sensing behaviour. The samples were subjected to tensile loading and the longitudinal strain was monitored together with the longitudinal electrical resistance. The results showed that MWCNTs dispersed in insulating PVDF matrix have the potential to be used as a sensitive network to monitor the strain levels in polymer/carbon nanotube nanocomposites as the deformation level of each sample was being reflected by the resistance changes.  相似文献   

17.
    
Inter-tube bridging of carbon nanotubes (CNTs) is a reliable way to improve the inter-tube stress transfer abilities. The work describes the interfacial interactions provided by a wall-to-wall inter-tube bridging between two single-walled carbon nanotubes (SWCNTs) embedded in a polyethylene (PE) matrix. Molecular dynamics (MD) models of tube pullout phenomena represent by the embedding (10, 10)–(10, 10) SWCNT with interconnections into an amorphous PE matrix. The simulations show that the inter-tube bridging enhances the pullout energies significantly due to the three energy dissipative micro-mechanisms: stress-induced tube deformation with localized auxetic effect, “cutting through” (penetration) between linker and matrix, and the accompanying tube pullout. Moreover, the results also predict that linkers with longer aliphatic chains or aromatic rings provide further increase to the levels of the nanotube pullout energies. These are of potential importance in guiding the design of CNT/polymer composites through inter-tube linkage.  相似文献   

18.
    
Transparent conductive composites can be achieved from PVDF–MWCNT at very low concentration of MWCNT. These composites show different degree of UV–Visible radiation absorption depending on MWCNT concentration in composites. The composition dependent dielectric properties and AC conductivity were also measured for these composites. Properties like AC conductivity, dielectric constant and loss are increasing with filler concentration. The variations of DC conductivity against composition and temperature are also reported. The electrical hysteresis and electrical set are observed for PVDF–MWCNT composites when subjected to heating–cooling cycle. The validity of different theoretical models depicting percolation threshold with respect to DC conductivity was tested for these composites.  相似文献   

19.
20.
    
A corrected Linde's criterion considering the shearing effect for anisotropic progressive damage is developed to describe the elastic-brittle behavior of fiber-reinforced composites. Based on this criterion, a new three-dimensional (3D) nonlinear finite element model for static damage of unidirectional fiber-reinforced composites is proposed within a framework of continuum mechanics. The model is validated by taking 3D braided composites as example to study the relationship between the damage of materials and the effective elastic properties. The impregnated unidirectional composites are treated as homogeneous and transversely isotropic materials, whose properties are calculated by the Chamis' equations. The more accurate failure mechanisms of composites are revealed in the simulation process, and the effects of braided parameters on the uniaxial tensile behavior of 3D braided composites are investigated. Comparison of numerical results and experimental data is also carried out, which shows a better agreement than that of former study using the 3D Hashin's criterion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号