首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reports the accelerated thermal ageing behaviors of pure epoxy resin and 3-D carbon fiber/epoxy braided composites. Specimens have been aged in air at 90 °C, 110 °C, 120 °C, 130 °C and 180 °C. Microscopy observations and attenuated total reflectance Fourier transform infrared spectrometry analyses revealed that the epoxy resin oxidative degradation only occurred within the surface regions. The surface oxidized layer protects inner resin from further oxidation. Both the resin degradation and resin stiffening caused by post-curing effects will influence the compression behaviors. For the braided composite, the matrix ageing is the main ageing mode at temperatures lower than glass transition temperatures (Tg) of the pure epoxy resin, while the fiber/matrix interface debonding could be observed at the temperatures higher than Tg, such as the temperature of 180 °C. The combination of matrix degradation and fiber/resin interface cracking leads to the continuous reduction of compressive behaviors.  相似文献   

2.
In this research, we proposed an electrochemical method for the recycling of carbon fibers from carbon fiber reinforced polymer (CFRP). Experiments were designed with different solution concentrations (3%, 10%, and 20% NaCl) and various levels of applied current (4 mA, 10 mA, 20 mA, and 25 mA) so as to identify the significant parameters that affect carbon fiber recycling efficiency. The recycled carbon fibers were characterized by using the single fiber tensile strength test, SEM, XRD, and XPS techniques. Test results showed that the maximum tensile strength of the reclaimed carbon fibers was 80% of the virgin carbon fibers (VCF). The increase in electrolyte concentration did not improve the recycling efficiency but resulted in severe oxidation and chlorination on the surface of recycled carbon fibers. From the experimental results, it can be concluded that the recycling of carbon fibers with electrochemical method is simple, effective, and economical.  相似文献   

3.
Reduced graphene oxide deposited carbon fiber (rGO-CF) was prepared by introducing GO onto CF surface through electrophoretic deposition method, following by reducing the GO sheets on CF with NaBH4 solution. The rGO-CF was found to be more effective than CF to improve the electromagnetic interference (EMI) shielding property of unsaturated polyester (UP) based composites. With 0.75% mass fraction of rGO-CF, the shielding effectiveness of the composite reached 37.8 dB at the frequency range of 8.2–12.4 GHz (x-band), which had 16.3% increase than that of CF/UP composite (32.5 dB) in the same fiber mass fraction. The results suggest that rGO-CF is a good candidate for the use as a light-weight EMI shielding material.  相似文献   

4.
To elucidate the effect of superheated steam (SHS) treatment of carbon fiber on the adhesion to epoxy resin and surface states, virgin unsized carbon fiber was exposed to SHS with or without N2 in the temperature range of 500–800 °C. The interfacial shear strength (IFSS) between the carbon fiber and epoxy resin was successfully improved by SHS treatment with N2, and the IFSS of fiber treated above 700 °C was the same as or higher than that of a commercial sized fiber. SHS treatment without N2 resulted in an increase of total acidic groups on the fiber surface accompanied with the increase of phenolic hydroxyl groups, whereas that with N2 resulted in a simultaneous increase of total acidic and basic functional groups. The significant improvement in the IFSS after SHS treatment with N2 is considered to be due to the increase of basicity on the fiber surface.  相似文献   

5.
An experimental study was performed to investigate the effect of high temperature exposure on mechanical properties of carbon fiber composite sandwich panel with pyramidal truss core. For this purpose, sandwich panels were exposed to different temperatures for different times. Then sandwich panels were tested under out-of-plane compression till failure after thermal exposure. Our results indicated that both the thermal exposure temperature and time were the important factors affecting the failure of sandwich panels. Severe reductions in residual compressive modulus and strength were observed when sandwich panels were exposed to 300 °C for 6 h. The effect of high temperature exposure on failure mode of sandwich panel was revealed as well. Delamination and low fiber to matrix adhesion caused by the degradation of the matrix properties were found for the specimens exposed to 300 °C. The modulus and strength of sandwich panels at different thermal exposure temperatures and times were predicted with proposed method and compared with measured results. Experimental results showed that the predicted values were close to experimental values.  相似文献   

6.
Poly(3-alkylthiophene) (P3AT) with a high Seebeck coefficient has recently been reported. However, P3AT/inorganic conductive composites exhibit relatively poor thermoelectric performance because of their low electrical conductivity. In this work, carbon fiber sheets with a high electrical conductivity were chosen as the inorganic phase, and poly(3-octylthiophene)(P3OT)/carbon fiber composites were prepared by casting P3OT solution onto the carbon fiber sheets. The carbon fiber sheets incorporated into the composites can provide good electrical conductivity, and P3OT can provide a high Seebeck coefficient. The highest power factor of 7.05 μW m−1 K−2 was obtained for the composite with 50 wt% P3OT. This work suggests a promising method for preparing large-scale thermoelectric composites with excellent properties.  相似文献   

7.
The electric heating and piezoresistive characteristics of CuO–woven carbon fiber (CuO–WCF) composite laminates were experimentally evaluated. Hybrid CuO–WCF composites were fabricated via a two-step seed-mediated hydrothermal method. The interlaminar interface between two plies of hybrid CuO–WCF/vinyl ester composite laminae was influenced by interlocked fiber–fiber cross-linking structures with CuO NRs and acted as electric heating and resistance elements. The contribution of CuO NRs (10–110 mM) to the interlaminar interface was determined by measuring the temperature profile, in order to investigate the electrical resistive heating behavior. At higher concentration of CuO NRs growth in the interlaminar region applied by 3 A, the average temperature reached to 83.55 °C at the interface area 50 × 50 mm2 and the heating efficiency was 0.133 W/°C owing to radiation and convection given by 10.5 W (3 A, 3.5 V). To investigate the piezoresistive response, the through-thickness gauge factor was observed at 0.312 during Joule heating applied by 2 A, compared with 0.639 at an ambient air temperature for CuO 110 mM concentration. The morphology and crystallinity of CuO NRs were investigated using scanning electron microscopy and X-ray diffraction analyses, respectively. The temperature dependence of hybrid CuO–WCF composite laminates’ storage moduli were analyzed using a dynamic mechanical analyzer. These characterizations showed that the interlaminar interface, combined with the high specific surface area of CuO NRs, provided the electron traps for electrical conduction around multiple WCF junctions and adjacent cross-linked laminae.  相似文献   

8.
The effect of CuO nanostructure morphology on the mechanical properties of CuO/woven carbon fiber (WCF)/vinyl ester composites was investigated. The growth of CuO nanostructures embedded in the surface of woven carbon fibers (WCFs) was carried out by a two-step seed-mediated hydrothermal method; i.e., seeding and growth treatments with controlled chemical precursors. CuO nanostructural morphologies ranging from petal-like to cuboid-like nanorods (NRs) were obtained by controlling the thermal growth temperature in the hydrothermal process over a growth time of 12 h. The Cu2+/O ratio and the rate of reaction greatly influenced the formation of CuO nanostructures as self-assembled shapes on the crystal planes in the order L[0 1 0] > L[1 0 0] > L[0 0 1]. Morphological variations were analyzed by scanning electron microscopy, X-ray diffraction, and Brunauer–Emmett–Teller surface area analysis. The impact behavior, in-plane shear strength, and tensile properties of the CuO/WCF/vinyl ester composites were analyzed for different CuO NR morphologies at various growth temperatures and molar concentrations. The CuO/WCF/vinyl ester composites had improved impact energy absorption and mechanical properties because the higher specific surface area of CuO NRs grown as secondary reinforced nanomaterials on WCFs enhanced load transfer and load-bearing capacity.  相似文献   

9.
Tension–tension fatigue properties of SiC fiber reinforced Ti–6Al–4V matrix composite (SiCf/Ti–6Al–4V) at room temperature were investigated. Fatigue tests were conducted under a load-controlled mode with a stress ratio 0.1 and a frequency 10 Hz under a maximum applied stress ranging from 600 to 1200 MPa. The relationship between the applied stress and fatigue life was determined and fracture surfaces were examined to study the fatigue damage and fracture failure mechanisms using SEM. The results show that, the fatigue life of the SiCf/Ti–6Al–4V composite decreases substantially in proportion to the increase in maximum applied stress. Moreover, in the medium and high life range, the relationship between the maximum applied stress and cycles to failure in the semi-logarithmic system could be fitted as a linear equation: Smax/μ = 1.381  0.152 × lgNf. Fractographic analysis revealed that fatigue fracture surfaces consist of a fatigued region and a fast fracture region. The fraction of the fatigued region with respect to the total fracture surface decreases with the increase of the applied maximum stresses.  相似文献   

10.
Magnetically-sensitive polyurethane composites, which were crosslinked with multi-walled carbon nanotubes (MWCNTs) and were filled with Fe3O4 nanoparticles, were synthesized via in situ polymerization method. MWCNTs pretreated with nitric acid were used as crosslinking agents. Because of the crosslinking of MWCNTs with polyurethane prepolymer, the properties of the composites with a high content of Fe3O4 nanoparticles, especially the mechanical properties, were significantly improved. The composites showed excellent shape memory properties in both 45 °C hot water and an alternating magnetic field (f = 45 kHz, H = 29.7 kA m−1). The shape recovery time was less than one minute and the shape recovery rate was over 95% in the alternating magnetic field.  相似文献   

11.
Rods made of continuous carbon fibers are being extensively used as structural materials in light weight micro-air vehicles owing to their excellent specific modulus and strength. Further, they possess excellent tribological characteristics – low friction and wear coupled with high conductivity making them an ideal reinforcement in developing light weight, high strength aluminum based metal matrix composites. In the last three decades, researchers have focused mainly on the study of mechanical and tribological behavior of discontinuous carbon fiber reinforced metal matrix composites. However, no information is available regarding the tribological behavior of carbon fibers rod reinforced metal matrix composites, although it is interesting and will result in expanding the applications of metal matrix composites (MMC) where tribological failures are expected.In the light of the above, the present work focuses on development of innovative Al6061–carbon fiber rods composites by casting route and assessing their tribological characteristics. Carbon fiber rods of 4 mm and 6 mm diameters were surface sensitized to achieve electro less nickel coating. Copper plating on the electro less nickel coated carbon fiber rods were carried out. The copper plated carbon fiber rods were arranged in cylindrical array in the metallic mold to which molten Al6061 alloy after degassing was poured at a temperature of 700 °C. The developed innovative composites were subjected to density tests, microstructure studies, hardness, friction and wear tests. A pin on disk configuration was used with hardened steel as the counter face. Load was varied from 20 N to 60 N while the sliding velocity was varied between 0.12 m/s and 0.62 m/s. Scanning electron microscopy (SEM) studies on worn surfaces and wear debris have been carried out to validate the wear mechanism. The developed innovative composites (11 Vol.% & 25 Vol.%) have exhibited lower coefficient of friction and wear rates when compared with matrix alloy.  相似文献   

12.
We reported line–plane-switching infrared (IR) fiber bundle with high-resolution of 0.027 μm1, small numerical aperture (NA) of 0.20 (±0.02), high filling-factor, and bending radius of around 5.0 mm, i.e. extremely good flexibility. This fiber bundle is made from chalcogenide glass fibers, possessing core (As40S58Se2) of 45 μm, cladding (As40S60) of 50 μm, and error of 1% in diameter. Based on the lens used to demonstrate IR push-broom imaging, the format of matching fiber bundle we chose is 64 × 9 in system to implement 192 × 3 format linear array imaging. By principle-demonstrating system incorporated this fiber bundle coupled with small scale Infrared Focal Plane Array (IRFPA), wide-field and long-array IR push-broom image was successfully demonstrated.  相似文献   

13.
Aligned electrospun nanofibrous bundle was used as the raw material for pretreatment, preoxidation and carbonization processes to prepare carbon nanofibers in a procedure temperature-controlled sintering furnace. Effect of carbonization temperature on the morphology and structural performance of nanofibers was investigated in present study. Results showed that RI (the relative intensity radio between Disordered peak and Graphite peak) of nanofibers carbonized at 1000 °C is 0.90, carbon content is up to 85.67%, conductivity is 105.44 S·cm 1, Young's modulus is 68.8 ± 0.42 GPa, and fiber strength is 306.0 ± 9.0 MPa, all of which endow the fibers with a superior comprehensive property.  相似文献   

14.
The effect of cellulose nano fibers (CNF): micro-fibrillated cellulose and bacteria cellulose fibers were investigated on the fatigue life of carbon fiber (CF) fabric/epoxy (EP) composites. Epoxy used as the matrix was physically modified with CNF in advance before fabricating the laminates. The high cycle fatigue strength was significantly improved at 0.3 wt% CNF. There exists an appropriate CNF content which makes the fatigue life longest. An increase of adhesive strength between CF and matrix results due to physical modification with CNF. The adhesive strength much increases with increasing the CNF content. Almost no interfacial debonding occurs at 0.8 wt% CNF content when CF breakage takes place. On the other hand, some debonding occurs along CFs from the breaking point at 0.3 wt% CNF. Debonding is more significant in the case of no CNF addition to the matrix. An appropriate interfacial strength brought at 0.3 wt% CNF is the key of fatigue life extension.  相似文献   

15.
We report on the first measurements of the physico-mechanical properties of the raffia textilis fiber. This fiber is the epidermis of the leaflet and is used to fabricate many ethnographical items. Scanning electron microscopy reveals a layered structure: a top layer with a tile-like structure, and a bottom layer with a honeycomb-like structure. X-ray diffraction and FTIR-ATR show the presence of cellulose Iβ with a crystallinity index of 64%. Tensile tests give a Young’s modulus of 30 GPa, a tensile strength of 500 ± 97 MPa, and a total elongation between 2% and 4%. The fiber density is 0.75 ± 0.07, conferring to it the highest known specific mechanical properties among all studied raw vegetable fibers.  相似文献   

16.
Carbon-bonded carbon fiber (CBCF) composites are a cost-effective solution for the production of low-density carbon-phenolic Thermal Protection Systems (TPS). This new TPS for spacecraft requires new experimental data for model development and validation. Ablation experiments of a CBCF composite were carried out in an inductively-coupled plasma generator to assess the performance in high-enthalpy flows. Surface temperatures up to 2900 K led to strong surface ablation and test samples of hemispherical shape responded with constant surface temperatures and recession rates. Cylindrical samples experienced a continuous surface temperature increase. Emission spectra of the cyano radical CN were indicative of a 4–5 mm reactive boundary layer. Deviation from thermal equilibrium was found by comparison to simulated spectra. Micrographs revealed an oxidation zone in the order of 0.2 mm at the surface, suggesting a gas phase diffusion controlled ablation regime. Strong corrosion of the fibers in nitrogen plasma is attributed to wall nitridation.  相似文献   

17.
Composite materials, in most cases fiber reinforced polymers, are nowadays used in the aerospace and transportation, in which high specific energy absorption (SEA) and strength are critical issues. Aimed at the improvement of SEA and the peak impact load (P), the structure optimization of composite tape sinusoidal specimen and corresponding experiments are investigated in this paper. Firstly, the finite element model of composite tape sinusoidal specimen is constructed and is validated by experiments. Then, both the single-objective and multi-objective optimizations are performed for composite tape sinusoidal specimen under axial impact loading. At last, the optimal results are validated by experiments. The optimal results show that the SAE increases 67.8% (from 51.3666 kJ/kg to 88.887 kJ/kg) and the P decreases 42.9% (from 34.9936 kN to 20.178 kN). This work lays a foundation for structural design of crashworthiness using fiber reinforced polymers materials.  相似文献   

18.
A novel ultra-bandwidth polarization splitter based on soft glass dual-core photonic crystal fiber (DC-PCF) is designed in this paper, which is analyzed through the finite element method (FEM). The coupling characteristics of the designed DC-PCF can be enhanced by a high refractive index As2S3 core. Numerical results show the ultra-bandwidths of the x- and y-polarization modes can reach to 86 nm and 60 nm as the extinction ratios better than −20 dB and −30 dB at the vicinity of the wavelength of 1.31 μm. The length of the designed soft glass DC-PCF is 52.29 mm and the extinction ratios of the x- and y-polarization modes are −85.57 dB and −56.81 dB at the wavelength of 1.31 μm, respectively. In addition, the designed splitter has a tolerance of ±10 nm in its all structure parameters, which make the design not sensitive to the perturbation during the fabrication process.  相似文献   

19.
Three-dimensional braided carbon fiber-reinforced ZrC matrix composite, 3-D Cf/ZrC, were prepared by liquid metal infiltration process at 1200 °C using a Zr2Cu intermetallic compound as infiltrator. The microstructure and properties of the composites were investigated. The results indicated that ZrC with a yield of 35.2 ± 1.8 vol.% was certified as the major phase of the composites. The formation of ZrC was controlled by a solution-precipitation mechanism. The obtained composites exhibited good mechanical properties, with a flexural strength of 293.0 ± 12.1 MPa, a flexural modulus of 82.7 ± 6.4 GPa and a fracture toughness of 9.8 ± 0.9 MPa m1/2. The mass and linear ablation rates of the composites exposed to oxyacetylene torch were 0.0013 ± 0.0005 g s−1 and −0.0009 ± 0.0003 mm s−1, respectively. The formation of a dense ZrO2 protective layer and the evaporation of residual Cu contributed mainly to the excellent ablation resistance.  相似文献   

20.
The fracture toughness associated with the fibre compressive failure was obtained from testing notched unidirectional carbon/epoxy four-point-bend specimens. Microscopy of failed specimens revealed that onset of damage was characterised by the formation of a single line of fibre breaks at approximately 45° to the plane of the initial notch. A micromechanical finite element model was used to investigate this failure scenario and it was concluded that the most probable cause of the damage morphology was compression-induced shear failure of the composite. An intrinsic material property in this case was deemed to be the mode II critical strain energy release rate associated with the initiation of the 45° crack. For IM7/8552, this was measured to be GIIc = 4.5 ± 0.8 kJ/m2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号