首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
熔融温度对PPS/PEEK中PPS的结晶熔融行为的影响   总被引:2,自引:2,他引:0  
用粉末干混法制备结晶/结晶共混体系PPS/PEEK,并用DSC研究了不同熔融温度下淬火PPS及PPS/PEEK共混物中PPS的结晶熔融行为。熔融温度(Tmelt)高于360℃时,对PPS的结晶熔融行为有影响,结晶温宽(ΔTc)随Tmelt提高而加宽;PEEK加入PEEK含量增加,使PPS的结晶、熔融温度下降。共混物中的PPS的结晶熔融行为受Tmelt影响更大。  相似文献   

2.
原位增容HAPE/PET共混体系结构与性能的研究   总被引:5,自引:0,他引:5  
采用DSC、WAXD、SEM及TGA研究了HDPE-PET共混体系在增容剂EVAS及EAA作用下的结晶性,继口的形态结构及热稳定性。结果表明,EVA及EAA的加入使HDPE-PET体系中HDPE组分的熔融热焓降低,结晶度下降,但熔融峰位置和晶胞结构基本保持不变;从扫描电镜照片可以观察到EVA及EAA对共混体系具有一定的增容作用,且EAA的效果优于EVA;共混体系的热稳定性随EVA及EAA的加入有所  相似文献   

3.
CPE增容PVC/SBS共混体系的研究   总被引:10,自引:3,他引:7  
通过冲击试验,应力-应变试验,动态力学分析(DMA),扫描电镜(SEM)及光学显微镜观察,研究了CPE增容的PVC/CPE-SBS共混物的性能与形态结构之间的关系。实验结果表明,CPE对PVC与SBS共混体系有很好的增容作用,CPE与SBS在一定组成范围内对PVC增韧具有协同效应,大幅度地提高共混物的抗冲击性能,尤其是对星型SBS体系更加显著。  相似文献   

4.
TEOS-PEG无机-有机杂化复合材料的研究   总被引:9,自引:0,他引:9  
阐述了溶胶凝胶法合成TEOSPEG(正硅酸乙酯聚乙二醇)无机有机杂化复合材料的基本原理,且成功地合成出该材料,同时进行了红外表征及热分析,探索了TEOSPEG凝胶比表面积、折射率及结构的影响因素。TEOSPEG无机有机杂化复合材料具有优良的物化性能及光学性能,可广泛用作各种特殊用途的光学元件。  相似文献   

5.
嵌段共聚物对PPO/PP共混物的增容作用   总被引:1,自引:0,他引:1  
研究表明苯乙烯-乙烯/丙烯嵌段共聚物及其混合顺序对聚/聚丙烯共混物形态和性能有一定影响。PPO/PP共混物加入增容剂后,分散相颗粒变得精细均匀,缺口冲击强度大大提高。文中计算了SEP/PPO及SEP/PP共混物的相互作用能密度B,计算表明,EP体积分数高的SEP和PPO的亲和力比SEP与PP的亲和力小,因此当SEP先与PPO预混合,然后与PP混合,SEP易于迁移到两相界面,降低了界面张力,减小了分  相似文献   

6.
TEOS—PEG无机—有机杂化复合材料的研究   总被引:6,自引:0,他引:6  
阐述了溶胶-凝胶法合成TEOS-PEG无机-有机杂化复合材料的基本原理,且成功地合成出该材料,同时材料了红有征及热分析,探索了TEOS-PEG凝胶比表面积、折射率及结构的影响因素,TEOS-PEG无机-有机杂化复合材料具有优良的物化性能及光学性能,可广泛用作各种特殊用途的光学元件。  相似文献   

7.
RPS/PE反应性共混研究   总被引:7,自引:0,他引:7  
用IR、DSC、GPC研究了侧基含有过氧键的活性聚苯乙烯与聚乙烯之间的反频,用SEM观察了共混物的断面形态。结果表明,RPS/PE共混反应中生成PS-g-PE,对PE/PS共混物具有增容作用,提高了共混物的力学性能。  相似文献   

8.
热孔法表征特种高分子合金超滤膜的孔径   总被引:1,自引:1,他引:0  
用热分析方法(DSC)对磺化聚砜(SPSF)与聚醚酮(PEK)高分子合金超滤膜的孔径和孔结构进行了研究。由实验得到热谱图,经计算得到不同合金比(SPSF/PEK)的超滤膜孔径及孔径体积分布。研究结果表明,在一定条件下,SPSF/PEK以不同的比例混合时,其膜的孔径分布范围在5 ̄15nm,平均孔径在6 ̄9nm之间;当合金比(SPSF/PEK)等于或大于4:6时,所制得的超滤膜对聚乙二醇(PEG,Mw  相似文献   

9.
用FT-IR光谱证实发了PVC与FE-g-DBM(下称FPE,用固相接枝法自制的固接枝物)之间存在着氢键和偶极-偶极的作用,其中以氢键作用为主。测定了PVC/CPE/PE和PVC/CPE/FPE合金的力学性能,用DSC、相衬显微镜及SEM表征了这两个体系的形态结构、研究了共混物中界面粘结力与与形态结构、合金性能的相互关系。  相似文献   

10.
SRS3D家庭音效处理器田卫SRS3D系统原理本文向大家介绍一款新颖的SUPERHSEP-A型SRS3D家庭音效处理器。HSEP是英文HOMESOUNDEFTTECTPROCESSOR(家庭音效处理器)的缩写。HSEP具有系统成本低、环绕效果明显、功...  相似文献   

11.
介绍了固体高聚物电解质(Solid Polymer Electrolytes,简称SPE)的研究进展,主要涉及固体高聚物电解质的发展状况,研究热点,性能改善的几点方法等。同时,对SPE未来的研究进行了展望。  相似文献   

12.
采用固相萃取与高效液相色谱联用技术,测定了水中的多环芳烃。实验中使用Supelco固相萃取过滤装置和Supelco C_(18)固相萃取小柱,100%的甲醇作为流动相。对于萤蒽(FLU),苯并(b)萤蒽(BbF),苯并(K)萤蒽(BkF),苯并(ghi)(BPer)及茚并(1,2,3-cd)芘(IP)的检测限分别为4.1,3.8,1.6,14.4,和3.8ng/L。  相似文献   

13.
综述了以丙烯腈类聚合物为基体材料的固体电解质的特性和研究进展,对丙烯腈类聚合物用作固体电解质基体材料的研究前景作了展望.  相似文献   

14.
分别采用液液萃取法和固相萃取法提取地表水样品中的有机磷农药残留。液液萃取法的方法检出限为0.05~0.2 ng/mL,加标回收率为86%~103%,相对标准偏差为2%~7%;固相萃取法的方法检出限为0.03~0.05 ng/mL,加标回收率为49%~118%,相对标准偏差为5%~18%。液液萃取法处理不同类型基体水样的测试稳定性较好,固相萃取法则对于洁净环境水体中痕量有机磷农药残留的富集更为适用。  相似文献   

15.
PEO基固态聚合物电解质被认为是目前固态锂电池领域极具产业化前景的固态电解质。为适应工业化生产,采用静电纺丝技术制备PEO/LiClO_(4)固态聚合物电解质(SPE),研究纺丝电压、纺丝液质量浓度和锂盐含量对SPE纤维膜形貌和直径的影响。通过扫描电子显微镜观察SPE中纤维的形貌,利用Image J软件分析SPE纤维的直径。通过DSC,XRD,FTIR-ATR和拉伸测试等手段对静电纺丝制备的SPE纤维膜的组成、结构、性能等进行研究。结果表明:当纺丝电压为15 kV、PEO/LiClO_(4)纺丝液质量浓度为6%、[EO]∶[Li^(+)]=10∶1(摩尔比)时,静电纺丝方法制备的PEO/LiClO_(4) SPE纤维膜具有较好的纤维形貌,平均直径为557 nm,分布均一;当[EO]∶[Li^(+)]=10∶1时,SPE纤维膜中PEO的熔点仅为53.8℃,结晶度低至18.9%;电解质在30℃时的离子电导率达到5.16×10^(-5)S·cm^(-1),同时具备良好的电化学稳定性和界面稳定性。  相似文献   

16.
高分子固体电解质(SPE)的研究进展   总被引:1,自引:0,他引:1  
高分子固体电解质(SPE)由于具有质轻、易成膜等特点,具有巨大的潜在应用价值,近年来得到了很大的发展。主要综述了各类高分子固体电解质的有关实验性研究工作,并简要地探讨了有关SPE今后的研究工作。  相似文献   

17.
固相萃取-气相色谱法测定葡萄酒中16种有机磷农药残留   总被引:5,自引:0,他引:5  
利用固相萃取(SPE)/气相色谱火焰光度(GC-FPD)技术建立了葡萄酒中16种有机磷农药残留量分析方法。样品加水稀释,过HLB小柱和LC-NH2小柱净化,浓缩、定容后,用气相色谱测定,外标法定量。各农药的方法定量限(LOQ)均为为0.01 mg/kg。添加回收实验,16种有机磷农药添加浓度为0.01-0.10 mg/kg时,添加回收率为65.3-92.3%,变异系数≤10%。  相似文献   

18.
Lithium-metal batteries (LMBs) with high energy densities are highly desirable for energy storage, but generally suffer from dendrite growth and side reactions in liquid electrolytes; thus the need for solid electrolytes with high mechanical strength, ionic conductivity, and compatible interface arises. Herein, a thiol-branched solid polymer electrolyte (SPE) is introduced featuring high Li+ conductivity (2.26 × 10−4 S cm−1 at room temperature) and good mechanical strength (9.4 MPa)/toughness (≈500%), thus unblocking the tradeoff between ionic conductivity and mechanical robustness in polymer electrolytes. The SPE (denoted as M-S-PEGDA) is fabricated by covalently cross-linking metal–organic frameworks (MOFs), tetrakis (3-mercaptopropionic acid) pentaerythritol (PETMP), and poly(ethylene glycol) diacrylate (PEGDA) via multiple C S C bonds. The SPE also exhibits a high electrochemical window (>5.4 V), low interfacial impedance (<550 Ω), and impressive Li+ transference number (tLi+ = 0.44). As a result, Li||Li symmetrical cells with the thiol-branched SPE displayed a high stability in a >1300 h cycling test. Moreover, a Li|M-S-PEGDA|LiFePO4 full cell demonstrates discharge capacity of 143.7 mAh g−1 and maintains 85.6% after 500 cycles at 0.5 C, displaying one of the most outstanding performances for SPEs to date.  相似文献   

19.
Solid polymer electrolytes (SPEs)‐based all‐solid‐state lithium–sulfur batteries (ASSLSBs) have attracted extensive research attention due to their high energy density and safe operation, which provide potential solutions to the increasing need for harnessing higher energy densities. There is little progress made, however, in the development of ASSLSBs to improve simultaneously energy density and long‐term cycling life, mostly due to the “shuttle effect” of lithium polysulfide intermediates in the SPEs and the low interfacial compatibility between the metal lithium anode and the SPE. In this work, the issues of solid/solid interfacial architecturing through atomic layer deposition of Al2O3 on poly(ethylene oxide)‐lithium bis(trifluoromethanesulfonyl)imide SPE surface are effectively addressed. The Al2O3 coating promotes the suppression of lithium dendrite formation for over 500 h. ASSLSBs fabricated with two layers of Al2O3‐coated SPE deliver high gravimetric/areal capacity and Coulombic efficiency, as well as excellent cycling stability and extremely low self‐discharge rate. This work provides not only a simple and effective approach to boost the electrochemical performances of SPE‐based ASSLSBs, but also enriches the fundamental understanding regarding the underlying mechanism responsible for their performance.  相似文献   

20.
All-solid-state lithium-metal batteries offer higher energy density and safety than lithium-ion batteries, but their practical applications have been pushed back by the sluggish Li+ transport, unstable electrolyte/electrode interface, and/or difficult processing of their solid-state electrolytes. Li+-conducting composite polymer electrolytes (CPEs) consisting of sub-micron particles of an oxide solid-state electrolyte (OSSE) dispersed in a solid, flexible polymer electrolyte (SPE) have shown promises to alleviate the low Li+ conductivity of SPE, and the high rigidity and large interfacial impedance of OSSEs. Solution casting has been by far the most widely used procedure for the preparation of CPEs in research laboratories; however, this method imposes several drawbacks including particle aggregation and settlement during a long-term solvent evaporation step, excessive use of organic solvents, slow production time, and mechanical issues associated with handling of ultra-thin films of CPEs (<50 µm). To address these challenges, an electrophoretic deposition (EPD) method is developed to in situ deposit ultra-thin CPEs on lithium-iron-phosphate (LFP) cathodes within just a few minutes. EPD-prepared CPEs have shown better electrochemical performance in the lithium-metal battery than those CPEs prepared by solution casting due to a better dispersion of OSSE within the SPE matrix and improved CPE contact with LFP cathodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号