首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
采用重力铸造法制备Mg-4Al-4Si-0.75Sb(AS44-0.75Sb)(质量分数/%,下同)镁合金,研究铸态合金的显微组织和室温力学性能。结果表明:铸态AS44-0.75Sb合金主要由α-Mg基体、β-Mg17Al12相、Mg2Si相和Mg3Sb2相组成;加入0.75Sb后形成高熔点的Mg3Sb2相,显著改善了Mg2Si相的形貌,使粗大的骨骼状Mg2Si转变为相对细小的汉字状Mg2Si。铸态合金的硬度HV为65.9,屈服强度为136.4MPa,抗拉强度为172.3MPa,伸长率为3.3%;拉伸断裂形式为准解理脆性断裂。  相似文献   

2.
采用光学显微镜(OM)、扫描电子显微镜(SEM)、能谱仪(EDS)、电子背散射衍射系统(EBSD)、透射电子显微镜(TEM)、硬度测试、室温拉伸测试等研究挤压比对Al-0.68Mg-0.60Si合金组织与性能的影响。结果表明:随着挤压比的增大,T6态Al-0.68Mg-0.60Si合金型材基体内的强化相弥散质点的尺寸逐渐减小,弥散程度增加,小角度晶界占比呈下降趋势,但再结晶分数有所提高,当挤压比达到39.6以上,合金内部基本为立方织构。此外,在挤压变形过程中,随着挤压比(λ=26.8~55.7)的增大,合金型材的硬度、抗拉强度先上升再下降;当λ=39.6时,合金的抗拉强度达到最大值284.00MPa。  相似文献   

3.
李省委  林宗德 《功能材料》2021,52(8):8206-8210
以Al-5Mg-2Si合金为基体合金,通过掺杂稀土Ce元素对合金进行改性,制备了不同Ce掺量的Al-5Mg-2Si-xCe(x=0,0.2,0.4和0.6)合金.采用XRD、SEM、EDS和力学性能分析等方式,研究了合金的结构、微观形貌和力学性能.结果表明,Al-5Mg-2Si-xCe(x=0,0.2,0.4和0.6)...  相似文献   

4.
采用表面活性元素Sb微合金化的方法制备了Mg-5Al-2Sr-xSb(x=0,0.3,0.6,1.0)合金,通过金相显微镜、X射线衍射仪、扫描电镜和力学性能测试等方法研究了Sb含量对Mg-5Al-2Sr合金微观组织和力学性能的影响.结果表明,Mg-5Al-2Sr-xSb合金铸态组织主要由枝晶α-Mg、沿晶界或分布在枝晶间的层状或离异共晶的Al4Sr相、块状三元Mg9Al3Sr相(τ相)和颗粒状SbSr2相组成,随着Sb含量的增加,Sb-Sr2相的数量逐渐增多,τ相逐渐减少.Sb的质量分数为0.6%时,断续分布的Al4Sr相和细小弥散分布的Sb-Sr2相能够提高Mg-5Al-2Sr合金的室温和高温(150℃)机械性能.  相似文献   

5.
程鹏  陈云贵  丁武成  王春明 《材料导报》2018,32(20):3562-3565
研究了添加Cu对热挤压Mg-3Sn-1Zn合金显微组织和力学性能的影响。结果表明:添加少量Cu能显著细化热挤压Mg-3Sn-1Zn合金晶粒,同时在合金中形成具有高热稳定性的CuMgZn相,提高了合金的室温及高温强度和塑性。当Cu含量为0.5%时,热挤压Mg-3Sn-1Zn-0.5Cu合金的晶粒最细,为2.8 μm;其强度和塑性最高,室温屈服强度为241 MPa,伸长率为20.3%,150 ℃时屈服强度为128 MPa,室温拉伸力学性能优于挤压态AZ31B合金,高温强度优于铸态AE42合金。  相似文献   

6.
使用扫描电子显微镜(SEM)、能量色散光谱仪(EDS)、光学显微镜(OM)及X射线衍射仪(XRD)等手段分析了Mg-14Al-5Si合金的组织和成分,用布洛维硬度计和电子万能试验机测试了这种合金的力学性能,研究了在Mg-14Al-5Si合金中添加不同量的Y元素对其组织和力学性能的影响。结果表明:在Mg-14Al-5Si合金中分别添加0.5%、0.8%、1.0%和1.5%(质量分数,下同)的Y元素,使合金中的Mg2Si相由粗大的树枝状变为多边形和圆形,共晶β-Mg17Al12相由粗大的连续网格状变为细小的网格状和孤岛状。Y的添加量为1.0%时改性效果最佳,Mg2Si相的平均尺寸由42.21 µm减小到8.15 µm,此时合金的力学性能最佳,硬度为135 HB,抗拉强度为147 MPa,屈服强度为76 MPa,伸长率为5.04%。在Y的添加量为1.5%的合金中发现白色块状的Mg-Si-Y化合物。Y元素能促进Mg2Si相形核、抑制其各向异性生长,并在β-Mg17Al12相的生长前沿偏析形成过冷结构,抑制其生长。  相似文献   

7.
以Zn-25Al-5Mg-2.5Si合金为基体材料,通过常规铸造方法制备了加入不同含量稀土Y的锌铝合金.采用扫描电镜、拉伸试验机、硬度计等分析研究了稀土Y对合金显微组织和力学性能的影响.实验结果表明,添加稀土Y后,在锌铝合金中,其与Al、Zn等元素形成硬度高、热硬性好的复杂成分化合物,分散于晶界和枝晶中,细化了组织,有效地阻碍了高温时基体的变形和晶界移动.随着Y含量的增加,在室温、100℃和180℃时合金的抗拉强度基本呈先升后降的趋势.当Y含量为0.4%(质量分数)时合金的综合性能最好,高温强度和硬度显著提高.180℃时合金的抗拉强度比不加Y时提高了26.4%,硬度提高了47.8%.  相似文献   

8.
为改善Mg-Al-Si系(AS系)变形镁合金因第二相粗大、分布不均而性能较低的现状,在200℃下对挤压态Mg-4Al-1Si-1Gd合金分别进行不同时间(5 h、10 h、15 h)的等温时效和等通道挤压(ECAP)处理,并利用光学显微镜、扫描显微镜和拉伸实验分析其组织及拉伸性能.结果表明:随着等温时效时间的延长,晶粒尺寸增大,晶界处析出少量聚集的大尺寸Mg17 Al12相,时效10 h后合金的室温拉伸性能较优,但与挤压态相比强塑性明显降低.而形变时效提供的热变形能和应变累积量促进了动态再结晶的充分进行,晶粒尺寸由挤压态的10.68μm减小至2.20μm,Mg2 Si相和Si3 Gd5相碎化完全且分布更均匀,晶界处析出了大量颗粒状Mg17 Al12相,基面织构明显弱化,形成了新的非基面织构组分,抗拉强度、屈服强度和延伸率与挤压态相比分别提高了11.7%、33.7%和19.9%.经计算,细晶强化对屈服强度的贡献值为42.8 MPa,Orowan强化的贡献值为4.25 MPa.  相似文献   

9.
朱涛  黄光杰  周芳  赵飞 《材料导报》2017,31(20):58-62
采用OM、SEM、EDS、XRD、显微硬度计和力学试验机研究了400℃、430℃、460℃、490℃和520℃不同固溶温度对轧制态Mg-2Gd-2Zn合金板材组织结构和力学性能的影响。结果表明,当温度不高于490℃时,晶粒尺寸随固溶温度升高几乎呈线性增长趋势。第二相颗粒也随固溶温度升高总体呈减少趋势。但在490℃固溶温度下,第二相反而增加,且呈细小弥散分布。此时显微硬度达最大值,为77.88HV,固溶时效强化效果显著。XRD分析结果表明,当固溶温度从430℃升高到490℃时,第二相主要由MgZn_2和GdZn_5的初生相转变为MgZn_2和GdZn的沉淀相。490℃固溶处理下合金板材沿RD、TD和45°方向的抗拉强度均达到最大值,分别为262 MPa、244 MPa和254 MPa;断裂伸长率略有降低,分别为34%、31%和39%,但塑性各向异性降低。  相似文献   

10.
目的研究均匀化、挤压及时效热处理对Mg-5Gd-4Y-0.3Zr合金组织和力学性能的影响。方法制备了Mg-5Gd-4Y-0.3Zr合金铸棒,并进行了均匀化处理和热挤压处理。对不同状态的试样进行了拉伸试验,观察了金相显微组织,采用X射线衍射方法进行了结构分析。结果铸态合金组织主要由α-Mg基体和第二相Mg5(Gd,Y)组成;经过均匀化处理后,合金的第二相发生了完全回溶,合金的力学性能得到了提升;合金经挤压后,组织得到了明显细化,在200℃保温60 h得到了强度的最大值,抗拉强度、屈服强度和伸长率分别为423.0 MPa,335.0 MPa与9.0%。结论Mg-5Gd-4Y-0.3Zr合金既保证了低成本,又具有优良的力学性能,适合推广应用。  相似文献   

11.
实验研究了Mg-4Al-2Si合金固溶处理过程中汉字状Mg2Si相颗粒的球化现象及其工艺参数对球化的影响.结果发现:Si沿Mg/Mg2Si界面扩散,使粗大的汉字状Mg2Si颗粒发生部分溶断,并依靠自发球化的趋势通过向未溶的粒状Mg2Si扩散聚集完成球化;最佳球化工艺为420℃保温16h.  相似文献   

12.
为了提高Mg-3Al-0.4Mn合金的常温力学性能,研究了铸态和挤压态下Si含量对AM30合金的组织和力学性能的影响.结果表明,增加Si的添加量会生成粗大的汉字状的Mg2Si相,不利于提高合金的力学性能;但经过挤压后,呈汉字状Mg2Si相破碎,变成颗粒细小的Mg2Si相,晶粒细化,有利于提高合金的性能.  相似文献   

13.
彭建  彭毅  韩韡  潘复生 《材料工程》2015,43(3):23-27
研究了Mg 2Zn Mn-0.5Nd镁合金不同挤压温度对其制品组织和性能的影响及作用机理.结果显示:挤压温度从340℃提高到420℃时,合金的室温伸长率可从14%左右提高到26%以上,伴随强度明显下降.挤压温度从340℃降低到260℃时,合金的伸长率也提升到19%,而强度减弱不明显.分析表明:合金的晶粒尺寸和织构强弱等因素,共同决定该合金挤压制品的室温力学性能.  相似文献   

14.
目的 为探究Zr含量变化对铸态Mg–4Zn–xZr(x=0.3,0.6,0.9,x表示质量分数,%)合金显微组织、力学性能和阻尼性能的影响。方法 通过扫描电镜(SEM)分析其显微组织变化,动态热分析仪(DMA)探究其高温及常温阻尼性能,X射线衍射仪(XRD)分析其物相,电子万能试验机进行力学性能测试。结果 Zr的质量分数由0.3%增至0.9%时,Mg–4Zn–xZr合金的平均晶粒尺寸分别为121、108、83 µm,第二相分别为岛屿状的MgZn、长条状的MgZn2和细小颗粒状的Mg7Zn3。在低温区,3种合金均存在阻尼峰P1,临界应变振幅点ε0.1的阻尼值Q1分别为0.061、0.044和0.023;在高温区,存在阻尼峰P2。随着Zr含量的增加,Mg–4Zn–xZr合金的抗拉强度由182 MPa提升至207 MPa,伸长率由15%下降至10.1%。结论 随着Zr含量的增加,合金中产生新的形核中心,晶粒发生细化,晶粒低位错储存能力提高,抗拉强度上升,塑性和阻尼性能下降。低温区P1峰为晶界阻尼峰,具有热激活弛豫特征;高温区P2峰为晶界型阻尼峰和微塑性型阻尼峰的叠加。  相似文献   

15.
塑性变形对铸态AZ31镁合金组织和性能的影响   总被引:3,自引:0,他引:3  
为了研究塑性变形对铸态镁合金组织和性能的改善作用,用铸态AZ31镁合金进行了等温压缩实验,并测试了原始试样和变形后试样的组织和性能.结果表明:铸态AZ31合金通过塑性变形可以显著细化晶粒;随变形温度的升高,变形所得试样抗拉强度下降;在同一温度下变形所得试样抗拉强度随变形程度的增加而升高,变形程度达到一定值后,抗拉强度不再升高并有下降的趋势;铸态AZ31合金低温变形(210~240℃)后,可大幅度提高其抗拉强度.  相似文献   

16.
目的 优化加工工艺,改善合金的组织,提高合金的力学性能。方法 采用金相(OM)观察、拉伸试验和X射线衍射,分析在大应变轧制下冷轧结合T6态处理后板材的成形性能,引入Williamson-Hall模型和Taylor函数,分析合金内部位错密度的变化规律及其对力学性能的影响。结果 随着前期轧制温度从350 ℃升高到400 ℃,合金晶粒得到明显细化,再结晶充分,晶粒尺寸细小,晶界处第二相粗大;冷轧后晶粒破碎严重,晶粒的碎化方向与轧制方向垂直;在350 ℃时,合金内部的位错密度为1.62×1015 m?2,位错密度对强度的贡献值为219.5 MPa,其抗拉强度最大为602 MPa、屈服强度为512 MPa、伸长率为12.6%。结论 Al?4.5Cu?1.5Mg?0.5Zr合金的晶粒组织明显细化,其力学性能得到提升。  相似文献   

17.
胡少峰  陈秋荣  沈钰  周学华 《材料导报》2013,27(Z1):326-328,331
通过采用合金制备、组织分析、力学性能测试等手段研究了Nd的加入对Mg-6Zn-3Cu合金微观组织和力学性能的影响.结果表明,Nd的加入改变了组织和相的分布;随着Nd加入量的增加,合金抗拉强度、屈服强度及延伸率先提高,达到最大值后开始下降.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号