首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pharmacological studies have demonstrated that various purinoceptors are involved in the control of the cerebral vascular tone in many species. In this study, the existence of P2X purinoceptors in the postmortem human cerebral arteries was investigated with organ-bath pharmacology, autoradiography, and immunohistochemistry. Specimens were obtained from the M2 region of the middle cerebral arteries from human cadavers with an age range of 53-91 years and postmortem time of 37-54 h. Application of alpha,beta-methylene adenosine triphosphate (ATP) produced concentration-dependent contraction in the arterial ring, whereas transmural nerve stimulation and noradrenaline did not elicit contraction. Autoradiography using [3H]alpha,beta-methylene ATP (a radioligand for P2X purinoceptors) showed specific [3H]alpha,beta-methylene ATP binding sites in the smooth-muscle cells of the postmortem human cerebral arteries. Immunohistochemistry with specific P2X1 purinoceptor antibodies revealed positive staining exclusively in the smooth muscle of the same specimens. All these results demonstrate the existence of P2X purinoceptors in human cerebral arteries, which were still functionally active despite the long postmortem time. The results from this study suggest that the postmortem human cerebral arteries can be useful specimens for studying the P2X purinoceptor-mediated responses.  相似文献   

2.
3.
Significant advances in understanding of P2X purinoceptor pharmacology have been made in the last few years. The limitations of nucleotide agonists as drug tools have now been amply demonstrated. Fortunately, inhibitors of the degrading ecto-ATPase enzymes are becoming available and it has become apparent that the complete removal of all divalent cations can be used experimentally in some systems to prevent nucleotide breakdown. Despite these issues, convincing evidence for P2X receptor heterogeneity, from data with agonists, has recently been reported. A number of new antagonists at P2X purinoceptors have also recently been described which to some degree appear to be more specific and useful than earlier antagonists like suramin. It is now apparent that suramin is a poor antagonist of ATP in many tissues because it potently inhibits ATPase activity at similar concentrations to those at which it blocks the P2X purinoceptor. Advances in the use of radiolabelled nucleotides as radioligands for binding studies has allowed the demonstration of P2X purinoceptors in a variety of tissues throughout the body including the brain. These studies have also provided evidence for receptor heterogeneity. Excitingly, two P2X purinoceptor genes have been cloned but operational studies suggest that more than two types exist. The cloning studies have also demonstrated a unique structure for the P2X purinoceptor which differentiates it from all other ligand-gated ion channel receptors. Further studies on P2X purinoceptor operation and structure are needed to help resolve controversies alluded to regarding the characterization and classification of nucleotide receptors. Hopefully such studies will also lead to a better understanding of the physiological and pathological importance of ATP and its activation of P2X purinoceptors. This will require the identification of better drug tools, in particular antagonists which may also provide the basis for novel therapeutic agents.  相似文献   

4.
The aim of this study was to determine whether 45Ca2+ influx could be used as a quantitative measure of channel activation for functional characterisation of P2X purinoceptors in cell lines. In undifferentiated PC12 cells, grown in suspension, ATP (EC50 = 45 microM), ATP gamma S (EC50 = 50 microM) and 2-meSATP (EC50 = 81 microM) but not alpha beta meATP (1 mM) stimulated 45Ca2+ influx 2-5 fold. This effect did not appear to be due to activation of P2U or P2Y purinoceptors since 1 mM UTP, ADP or ADP beta S did not produce any significant effect. Similarly, the effects of ATP were not apparently mediated through activation of P2Z purinoceptors since dibenzylATP behaved as a weak (EC50 = 191 microM) partial agonist (Maximal effect 29.5% of ATP maximum) and there was no detectable ATP-stimulated ethidium bromide uptake in the PC12 cells. ATP-stimulated 45Ca2+ influx was not affected by nifedipine suggesting that it was not secondary to activation of L-type calcium channels and rather reflected influx through a P2X purinoceptor present in these cells. The ATP-stimulated 45Ca2+ influx could be reduced by monovalent cations, presumably as a result of direct competition for influx through the cation channel, with the following rank order of potency:- guanidinium (EC50 = 16 mM) > sodium > Tris > choline > N-methyl-D-glucamine = sucrose). A number of P2 purinoceptor antagonists inhibited ATP-stimulated 45Ca2+ influx. Pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (3-300 microM), pyridoxal 5-phosphate (3-300 microM) and d-tubocurarine (30-300 microM) produced an insurmountable antagonism of responses to ATP, with no marked change in agonist EC50. Suramin (100-300 microM) and cibacron blue (30-300 microM) produced a surmountable antagonism while DIDS (4,4'-diisothiocyanatostilbene-2,2'disulfonic acid) only antagonised responses to ATP at concentrations in excess of 300 microM. The general properties of the P2X purinoceptor population identified in these cells were consistent with them being P2X2 purinoceptors. These findings suggest that ATP-stimulated 45Ca2+ influx may be used as a reliable and quantitative functional assay for characterisation of P2X purinoceptor subtypes in cell lines.  相似文献   

5.
1. ATP has previously been shown to act as a sympathetic cotransmitter in the rat kidney. The present study analyses the question of whether postganglionic sympathetic nerve endings in the kidney possess P2-receptors which modulate noradrenaline release. Rat kidneys were perfused with Krebs-Henseleit solution containing the noradrenaline uptake blockers cocaine and corticosterone and the alpha2-adrenoceptor antagonist rauwolscine. The renal nerves were electrically stimulated, in most experiments by 30 pulses applied at 1 Hz. The outflow of endogenous noradrenaline (or, in some experiments, of ATP and lactate dehydrogenase) as well as the perfusion pressure were measured simultaneously. 2. The P2-receptor agonist adenosine-5'-O-(3-thiotriphosphate) (ATPgammaS, 3-30 microM) reduced the renal nerve stimulation (RNS)-induced outflow of noradrenaline (estimated EC50 =8 microM). The P2-receptor antagonist cibacron blue 3GA (30 microM) shifted the concentration-inhibition curve for ATPgammaS to the right (apparent pKB value 4.7). 3. Cibacron blue 3GA (3-30 microM) and its isomer reactive blue 2 (3-30 microM) significantly increased RNS-induced outflow of noradrenaline in the presence of the P1-receptor antagonist 8-(p-sulphophenyl)theophylline (8-SPT, 100 microM) by about 70% and 90%, respectively. The P2-receptor antagonist suramin (30-300 microM) only tended to enhance RNS-induced outflow of noradrenaline. When the nerves were stimulated by short pulse trains consisting of 6 pulses applied at 100 Hz (conditions under which autoinhibition is inoperative), reactive blue 2 did not affect the RNS-induced outflow of noradrenaline. 4. RNS (120 pulses applied at 4 Hz) induced the outflow of ATP but not of the cytoplasmatic enzyme lactate dehydrogenase. 5. ATPgammaS (3-30 microM) concentration-dependently reduced pressor responses to RNS at 1 Hz. Cibacron blue 3GA, reactive blue 2 as well as suramin also reduced pressor responses to RNS (maximally by 50 to 70%). 6. This study in rat isolated kidney, in which the release of endogenous noradrenaline was measured, demonstrates that renal sympathetic nerves possess prejunctional P2-receptors that mediate inhibition of transmitter release. These prejunctional P2-receptors are activated by endogenous ligands, most likely ATP, released upon nerve activity. Both, P2-receptor agonists and P2-receptor antagonists reduced pressor responses to RNS either by inhibiting transmitter release or by blocking postjunctional vasoconstrictor P2-receptors.  相似文献   

6.
ATP (1 mM) inhibited, whereas 2-methylthio-ATP (30 microM), a P2Y-selective purinoceptor agonist, increased electrically evoked release of [3H]noradrenaline from chick sympathetic neurons. The P2X-selective purinoceptor agonist alpha,beta-methylene-ATP (30 microM) had no effect. The ATP-induced inhibition of release as well as the facilitation caused by 2-methylthio-ATP was not affected by the selective adenosine (P1) receptor antagonist 8-(p-sulfophenyl)-theophylline (8-PST; 100 microM), but completely prevented by the non-selective P2 antagonist suramin (300 microM). The present data reveal a dual regulation of noradrenaline release from sympathetic neurons. Facilitation seems to be mediated by a P2Y purinoceptor, whereas inhibition is caused by a P2 purinoceptor which needs further subtype characterization.  相似文献   

7.
The P2 purinoceptor antagonist suramin reverses skeletal muscle paralysis evoked by non-depolarizing neuromuscular blocking agents in vitro and in vivo. To further study the action of suramin on neuromuscular transmission, (miniature) endplate potentials ((m.)e.p.ps), motor nerve terminal currents and the release of radiolabeled acetylcholine was measured in isolated nerve-muscle preparations. In preparations paralysed by low Ca2+/high Mg2+ conditions, suramin (10 microM-1 mM) induced a concentration-dependent decrease in quantal content of the e.p.ps without affecting m.e.p.ps. Suramin reversed neuromuscular block by d-tubocurarine in these preparations. In erabutoxin paralysed preparations, suramin (40 microM-1 mM) inhibited the motor nerve terminal currents related to Ca2+ influx concentration-dependently, but did not affect Na+ currents. Suramin-induced inhibition of Ca2+ currents was not antagonized by ATP gamma S. Suramin (300 microM) reduced [14C]acetylcholine outflow in non-paralysed rat phrenic nerve-hemidiaphragm preparations by 32%. As suramin did not chelate Ca2+, these results indicate that suramin inhibits neuromuscular transmission by blocking prejunctional Ca2+ channels, thereby decreasing acetylcholine release upon nerve stimulation.  相似文献   

8.
1. We have studied the effects of purinoceptor stimulation on Ca2+ signals in bovine adrenomedullary endothelial cells. [Ca2+]i was determined with the fluorescent probe fura-2 both in population samples and in single, isolated, endothelial cells in primary culture and after subculturing. 2. In endothelial cells, maintained in culture for more than one passage, several purinoceptor agonists elicited clear [Ca2+]i transient peaks that remained in the absence of extracellular Ca2+. Adenosine 5'-triphosphate (ATP) and uridine 5'-triphosphate (UTP) were equipotently active, with EC50 values of 8.5 +/- 0.9 microM and 6.9 +/- 1.5 microM, respectively, whereas 2-methylthioadenosine 5'-triphosphate (2MeSATP), adenosine 5'-(alpha, beta-methylene)triphosphate (alpha, beta-MeATP) and adenosine(5')tetraphospho(5')adenosine (Ap4A) were basically inactive. Adenosine 5'-O-(2-thiodiphosphate) (ADP beta S) was a weak agonist. The apparent potency order was UTP = ATP > ADP beta S > 2MeSATP > alpha, beta-MeATP. 3. Cross-desensitization experiments revealed that UTP or ATP, added sequentially at concentrations of maximal effect, could completely abolish the [Ca2+]i response to the second agonist. ADP beta S exerted only a partial desensitization of the response to maximal ATP, in accordance with its lower potency in raising [Ca2+]i. 4. The effect on [Ca2+]i of 100 microM ATP in subcultured cells was reduced by only 25% with 100 microM suramin pretreatment and was negligibly affected by exposure to 10 microM pyridoxalphosphate-6-azophenyl-2', 4'-disulphonic acid (PPADS). The concentration-effect curve for ATP was not significantly affected by PPADS, but was displaced to the right by a factor of 6.5 by 100 microM suramin. 5. In primary cultures, clear [Ca2+]i responses were elicited by 2MeSATP. Suramin totally and selectively blocked 2MeSATP responses, whereas UTP-evoked [Ca2+]i transients were mainly unaffected by suramin or PPADS. Over 80% of cells tested showed responses to both 2MeSATP and UTP. The [Ca2+]i response to UTP was not desensitized in the presence of 2MeSATP. 6. ATP and UTP stimulated the release of preloaded [3H]-arachidonic acid ([3H]-AA), both in the presence and in the absence of extracellular Ca2+, by approximately 135% with respect to basal levels. Suramin and PPADS enhanced, rather than inhibited, the [3H]-AA releasing effect of ATP by 2.5 times. Suramin also potentiated the effect of the calcium ionophore A23187. 7. These results indicate that endothelial cells from adrenomedullary capillaries co-express both P2Y- and P2U-purinoceptors. P2Y-purinoceptors are lost in culture with the first passage of the cells. The P2U-purinoceptor subtype present in these cells is insensitive to PPADS and thus similar to that found in aortic endothelial cells.  相似文献   

9.
Extracellular and whole-cell patch clamp recordings were used to study the excitatory responses elicited by purine nucleotides in pontine slices of the rat brain containing the locus coeruleus (LC). The P2 purinoceptor agonists, alphabeta-methyleneadenosine 5'-triphosphate (alphabetameATP) and adenosine 5'-O-(2-thiodiphosphate) (ADPalphabetaS), and a novel purinoceptor agonist, alphabeta-methyleneadenosine 5'-diphosphate (alphabetameADP), elicited concentration-dependent increases in the spontaneous firing rate over the concentration range (1-300 microM). On vagus nerve or dorsal root preparations alphabetameADP (100 microM) had no agonist activity. In the presence of both alphabetameATP (300 microM), ADPbetaS (300 microM) elicited a further and significant increase in the firing rate of the LC neurones, whilst neither alphabetameATP nor alphabetameADP (300 microM) elicited a further response. The P2 purinoceptor antagonists, suramin (100 microM) and pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS; 30 microM), markedly attenuated responses to all three agonists. Whole-cell recording of membrane current showed that, at - 60 mV, alphabetameATP and alphabetameADP (both 100 microM) elicited inward currents of a similar magnitude, whilst the inward currents elicited by a lower concentration of ADPbetaS (30 microM) were larger and faded in the presence of this agonist. In the presence of tetrodotoxin and a combination of other neurotransmission blockers, both alphabetameATP and alphabetameADP still produced inward currents. Based on the known selectivity of the agonists used in this study, there appear to be two distinct P2 purinoceptor types present on neurones in the LC, which correspond to the P2X and P2Y types. The responses elicited by alphabetameADP appear to be mediated through a putative P2X purinoceptor, although further work is required to determine which P2X receptor subtype(s) are involved.  相似文献   

10.
The solubilized acetylcholine receptor from Torpedo californica showed positive cooperativity in acetylcholine binding with a dissociation constant of 1.2 X 10(-8) M. Blockade of acetylcholine binding by nicotine was competitive; blockade by d-tubocurarine appeared to result from an allosteric interaction that altered half of the acetylcholine binding sites to a lower affinity form; decamethonium blockade displayed properties of competitive and allosteric inhibition suggesting less specificity for decamethonium binding than seen with either nicotine or d-tubocurarine. The d-tubocurarine inhibition data were evaluated by several possible models involving either differential competitive inhibition or allosteric inhibiton. The data were best described by the allosteric model.  相似文献   

11.
P2X receptors are cation channels gated by extracellular ATP. The seven known P2X isoforms possess no sequence homology with other proteins. Here we studied the quaternary structure of P2X receptors by chemical cross-linking and blue native PAGE. P2X1 and P2X3 were N-terminally tagged with six histidine residues to allow for non-denaturing receptor isolation from cRNA-injected, [35S]methionine-labeled oocytes. The His-tag did not change the electrophysiological properties of the P2X1 receptor. His-P2X1 was found to carry four N-glycans per polypeptide chain, only one of which acquired Endo H resistance en route to the plasma membrane. 3, 3'-Dithiobis(sulfosuccinimidylpropionate) (DTSSP) and two of three bifunctional analogues of the P2X receptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) cross-linked digitonin-solubilized His-P2X1 and His-P2X3 quantitatively to homo-trimers. Likewise, when analyzed by blue native PAGE, P2X receptors purified in digitonin or dodecyl-beta-D-maltoside migrated entirely as non-covalently linked homo-trimers, whereas the alpha2 beta gamma delta nicotinic acetylcholine receptor (used as a positive control) migrated as the expected pentamer. P2X monomers remained undetected soon after synthesis, indicating that trimerization occurred in the endoplasmic reticulum. The plasma membrane form of His-P2X1 was also identified as a homo-trimer. If n-octylglucoside was used for P2X receptor solubilization, homo-hexamers were observed, suggesting that trimers can aggregate to form larger complexes. We conclude that trimers represent an essential element of P2X receptor structure. Keywords: blue native PAGE/cross-linking/P2X receptor/quaternary structure.  相似文献   

12.
P1,P4-Diadenosine 5'-tetraphosphate (Ap4A) acts as an extracellular modulator through its interaction with purinoceptors. Our laboratory has demonstrated the presence of an Ap4A receptor in cardiac tissue [1,2]. Due to the rapid hydrolysis of ATP by cardiac membranes the relationship of ATP and Ap4A binding to purinoceptors on cardiac membranes has not been characterized. In this communication we used two approaches to determine the relationship of ATP to the Ap4A receptor. Radioligand binding carried out with [alpha-32P]Ap4A and adenosine 5'-O-?3-thiotriphosphate? ([gamma-35S]ATPgammaS) demonstrates the presence of a single high affinity binding site for Ap4A and the presence of two binding sites for ATPgammaS. The second approach utilized immunoaffinity purified Ap4A receptor that was shown to be free of ATPase and Ap4Aase activities. Non-radiolabeled Ap4A and ATPgammaS effectively inhibited photocrosslinking of [alpha-32P]8-N3Ap4A to the receptor polypeptide while ATP was a much less effective inhibitor. Furthermore, on plasma membranes [alpha-32P]8-N3Ap4A photocrosslinked to only a 50 kDa polypeptide. These data are consistent with Ap4A interacting with a homogeneous population of receptors on cardiac plasma membranes but with ATP having a low affinity for the receptor.  相似文献   

13.
14.
The P2Y1 purinoceptor cloned from chick brain (Webb, T. et al (1993) FEBS Lett., 324, 219-225) is a 362 amino acid, 41 kDa protein. To locate residues tentatively involved in ligand recognition a molecular model of the P2Y purinoceptor has been constructed. The model was based on the primary sequence and structural homology with the G-protein coupled photoreceptor rhodopsin, in analogy to the method proposed by Ballesteros and Weinstein ((1995) Meth. Neurosci. 25, 366-428). Transmembrane helices were constructed from the amino acid sequence, minimized individually, and positioned in a helical bundle. The helical bundle was then minimized using the Amber forcefield in Discover (BIOSYM Technologies) to obtain the final model. Several residues that have been shown to be critical in ligand binding in other GPCRs are conserved in the P2Y1 purinoceptor. According to our model the side chains of these conserved residues are facing the internal cleft in which ligand binding likely occurs. The model also suggests four basic residues (H121 in TM3, H266 and K269 in TM6 and R299 in TM7) near the extracellular surface that might be involved in ligand binding. These basic residues might be essential in coordinating the triphosphate chain of the endogenous ligand adenosine 5'-triphosphate (ATP). Potential binding sites for agonists have been explored by docking several derivatives (including newly synthesized N6-derivatives) into the model. The N6-phenylethyl substituent is tolerated pharmacologically, and in our model this substituent occupies a region predominantly defined by aromatic residues such as F51 (TM1), Y100 (TM2) and F120 (TM3). The dimethylated analogue of ATP, N6,N6-dimethyl-adenosine 5'-triphosphate, is less well tolerated pharmacologically, and our model predicts that the attenuated activity is due to interference with hydrogen bonding capacity to Q296 (TM7).  相似文献   

15.
Guanosine 5-[y-thio]triphosphate ([35S]GTP gamma S) binding to guinea pig bronchial membranes from immature and mature guinea pigs was rapid (Kon: 3.8 x 10(5) mol-1 min-1), saturable (Bmax: 160 pmoles/mg protein) and of high affinity (Kd: 0.6 microM). [35S]GTP gamma S rapidly dissociated in the absence of magnesium (Koff: 0.06 min-1), but 50 mM magnesium inhibited the dissociation. Maturation did not alter the affinity of the ligand, but Bmax (pmoles/mg DNA) was greater in preparations from mature animals (929 +/- 16 vs. 620 +/- 64). [35S]GTP gamma S was displaced by guanine nucleotides with a rank order of potency of GDP beta S = Gpp(NH)p > GDP > GTP, but not by ATP. We conclude that [35S]GTP gamma S is a specific and useful method to quantitate bronchial membrane-bound GTP-binding proteins. The technique shows that there is a significant increase in the cellular content of G-proteins during maturation.  相似文献   

16.
1. Using recombinant P2X2 receptors expressed in Xenopus oocytes, the modulatory effects of zinc (Zn2+) on ATP-responses were studied under voltage-clamp conditions and at different levels of extracellular pH. 2. Zn2+ (0.3-300 microM) added to the bathing medium potentiated ATP-activated membrane currents, increasing ATP-responses by up to 20 fold. This potentiating effect was reversed on washout. Zn2+-potentiation was reduced in an exponential manner (decaying 1/e in 42 s) as the interval was lengthened between adding Zn2+ then ATP to the superfusate. 3. The potentiating effect of Zn2+ was progressively diminished by acidic shifts in extracellular pH (pHe) which, of itself, also potentiated ATP-responses at P2X2 receptors. The maximal potentiating effects of Zn2+ and H+ were not additive. 4. Neither Zn2+ nor H+ potentiation of ATP-responses was abolished by diethylpyrocarbonate (DEPC, 0.3-3 mM), which irreversibly denatures histidyl residues. Nine histidyl residues are present in the extracellular loop of P2X2 receptors. 5. Zn2+ also enhanced the blocking activity of the P2 receptor antagonist suramin at P2X2 receptors. Therefore, Zn2+ also mimics H+ in increasing suramin-activity at P2X2 receptors. 6. In summary, Zn2+ and H+ potentiate agonist and antagonist activity at P2X2 receptors but their effects are not wholly alike for receptor agonism. There, the potentiating effects of Zn2+ are time-dependent and gradually convert to inhibition while those of H+ are time-independent, persistent and more potent, suggesting that either these modulators interact in a different way with a single allosteric site or with different allosteric sites.  相似文献   

17.
ATP is a fast transmitter in sympathetic ganglia and at the sympathoeffector junction. In primary cultures of dissociated rat superior cervical ganglion neurons, ATP elicits noradrenaline release in an entirely Ca2+-dependent manner. Nevertheless, ATP-evoked noradrenaline release was only partially reduced (by approximately 50%) when either Na+ or Ca2+ channels were blocked, which indicates that ATP receptors themselves mediated transmembrane Ca2+ entry. An "axonal" preparation was obtained by removing ganglia from explant cultures, which left a network of neurites behind; immunostaining for axonal and dendritic markers revealed that all of these neurites were axons. In this preparation, ATP raised intraaxonal Ca2+ and triggered noradrenaline release, and these actions were not altered when Ca2+ channels were blocked by Cd2+. Hence, Ca2+-permeable ATP-gated ion channels, i.e., P2X purinoceptors, are located at presynaptic sites and directly mediate Ca2+-dependent transmitter release. These presynaptic P2X receptors displayed a rank order of agonist potency of ATP >/= 2-methylthio-ATP > ATPgammaS > alpha,beta-methylene-ATP approximately beta,gamma-methylene-L-ATP and were blocked by suramin or PPADS. ATP, 2-methylthio-ATP, and ATPgammaS also evoked inward currents measured at neuronal somata, but there these agonists were equipotent. Hence, presynaptic P2X receptors resemble the cloned P2X2 subtype, but they appear to differ from somatodendritic P2X receptors in terms of agonist sensitivity. Suramin reduced depolarization-evoked noradrenaline release by up to 20%, when autoinhibitory mechanisms were inactivated by pertussis toxin. These results indicate that presynaptic P2X purinoceptors mediate a positive, whereas G-protein-coupled P2Y purinoceptors mediate a negative, feedback modulation of sympathetic transmitter release.  相似文献   

18.
Ecto-ATPase is a plasma membrane-bound enzyme that sequentially dephosphorylates extracellular nucleotides such as ATP. This breakdown of ATP and other nucleotides makes it difficult to characterize and classify P2 purinoceptors. We have previously shown that the P2 purinergic antagonists, PPADS, suramin and reactive blue, act as ecto-ATPase inhibitors in various cell lines. Here, we show that the P2 purinergic agonists, ATPgammaS, alpha,beta-methylene ATP (alpha,beta-MeATP) and AMP-PNP, inhibit the ecto-ATPase of bovine pulmonary artery endothelial cells (CPAE), with pIC50 values of 5.2, 4.5 and 4.0, respectively. In CPAE, FPL67156, a selective ecto-ATPase inhibitor, also inhibits ecto-ATPase activity, with a pIC50 value of 4.0. In addition, alpha,beta-MeATP (3-100 microM), which itself does not induce phosphoinositide (PI) turnover, left-shifted the agonist-concentration effect (E/[A]) curves for ATP, 2MeS-ATP and UTP by approximate 100-300 fold, while those for ATPgammaS and AMP-PNP were only shifted approximately 2-3 fold. Moreover, in the presence of alpha,beta-MeATP, not only was the potentiation effect of PPADS on the UTP response lost, but a slight inhibition of the UTP response by PPADS was also seen. Thus, we conclude that the action of ATPgammaS, alpha,beta-MeATP and AMP-PNP as ecto-ATPase inhibitors account for their high agonist potency, and also provide information for the development of ecto-ATPase inhibitors of high selectivity and potency.  相似文献   

19.
ATP is known to act as an extracellular signal in many organs. In the heart, extracellular ATP modulates ionic processes and contractile function. This study describes a novel, metabolic effect of exogenous ATP in isolated rat cardiomyocytes. In these quiescent (i.e. noncontracting) cells, micromolar concentrations of ATP depressed the rate of basal, catecholamine-stimulated, or insulin-stimulated glucose transport by up to 60% (IC50 for inhibition of insulin-dependent glucose transport, 4 microM). ATP decreased the amount of glucose transporters (GLUT1 and GLUT4) in the plasma membrane, with a concomitant increase in intracellular microsomal membranes. A similar glucose transport inhibition was produced by P2 purinergic agonists with the following rank of potencies: ATP approximately ATPgammaS approximately 2-methylthio-ATP (P2Y-selective) > ADP > alpha,betameATP (P2X-selective), whereas the P1 purinoceptor agonist adenosine was ineffective. The effect of ATP was suppressed by the poorly subtype-selective P2 antagonist pyridoxal-phosphate-6-azophenyl-2', 4'-disulfonic acid but, surprisingly, not by the nonselective antagonist suramin nor by the P2Y-specific Reactive Blue 2. Glucose transport inhibition by ATP was not affected by a drastic reduction of the extracellular concentrations of calcium (down to 10(-9) M) or sodium (down to 0 mM), and it was not mimicked by a potassium-induced depolarization, indicating that purinoceptors of the P2X family (which are nonselective cation channels whose activation leads to a depolarizing sodium and calcium influx) are not involved. Inhibition was specific for the transmembrane transport of glucose because ATP did not inhibit (i) the rate of glycolysis under conditions where the transport step is no longer rate-limiting nor (ii) the rate of [1-14C]pyruvate decarboxylation. In conclusion, extracellular ATP markedly inhibits glucose transport in rat cardiomyocytes by promoting a redistribution of glucose transporters from the cell surface to an intracellular compartment. This effect of ATP is mediated by P2 purinoceptors, possibly by a yet unknown subtype of the P2Y purinoceptor family.  相似文献   

20.
The pH dependence of the facilitation by dopamine (10 microM), 5-hydroxytryptamine (10 microM), adenosine (1 and 100 microM), Zn2+ (10 microM) and Cd2+ (1 mM) of P2X2 purinoceptor/channels was tested by expressing these channels in Xenopus oocytes. In a pH range between 6.0 and 8.5, concentration-response curves for an inward current activated by ATP were shifted toward a lower concentration range at a more acidic pH, indicating that the sensitivity to ATP is pH-dependent. Comparison of the effects of the neurotransmitters and the divalent cations on the ATP-activated current was made using a concentration of ATP which activated 40-50% of the maximal current at each pH value. The current facilitation by dopamine was obvious at pH 7.1 and 7.7, but was not observed at pH 8.5. At pH 6.0, the current was inhibited upon first trials of dopamine, but it was facilitated upon second trials. With 5-hydroxytryptamine and adenosine, the current facilitation was most remarkable at pH 6.0, less remarkable at pH 7.1 and 7.7, and the facilitation was almost abolished at pH 8.5. On the other hand, the current facilitation by Zn2+ and Cd2+ was more remarkable at alkaline pH values (7.7 and 8.5), and the facilitation was almost abolished at pH 6.0. The results suggest that the facilitation of P2X2 purinoceptors depends on pH, and the pH dependence was different between the neurotransmitters and the divalent cations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号