首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondrial DNA diversity in the Kuna Amerinds of Panamá   总被引:2,自引:0,他引:2  
Mitochondrial DNA (mtDNA) haplotype diversity was determined for 63 Chibcha-speaking Kuna Amerinds sampled widely across their geographic range in eastern Panamá. The Kuna data were compared with mtDNA control region I sequences from two neighboring Chibchan groups, the Ng?bé and the Huetar; two Amerind groups located at the northern and southern extremes of Amerind distribution, the Nuu-Chah-Nulth of the Pacific Northwest and the Chilean Mapuche; and with a single Na-Dene group, the Haida of the Pacific Northwest. The Kuna exhibited low levels of mitochondrial diversity as had been reported for the other two Chibchan groups and, furthermore, carried only two of the four Amerind founding lineages first reported by Schurr and coworkers (Am. J. Hum. Genet. 1990; 46: 613-623). We posit that speakers of modern Chibchan languages (henceforth referred to as the Chibcha) passed through a population bottleneck caused either by ethnogenesis from a small founding population and/or subsequent European conquest and colonization. Using the approach of Harpending et al. (Curr. Anthropol. 1993; 34: 483-496), we estimated a Chibchan population bottleneck and subsequent expansion approximately 10,000 years before present, a date consistent with a bottleneck at the time of Chibchan ethnogenesis. The low mtDNA diversity of Kuna Amerinds, as opposed to the generally high levels of mtDNA variation detected in other Amerind groups, demonstrates the need for adequate sampling of cultural or racial groups when attempting to genetically characterize human populations.  相似文献   

2.
The genetic variability and population structure of worldwide populations of the sperm whale was investigated by sequence analysis of the first 5'L 330 base pairs in the mitochondrial DNA (mtDNA) control region. The study included a total of 231 individuals from three major oceanic regions, the North Atlantic, the North Pacific and the Southern Hemisphere. Fifteen segregating nucleotide sites defined 16 mtDNA haplotypes (lineages). The most common mtDNA types were present in more than one oceanic region, whereas ocean-specific types were rare. Analyses of heterogeneity of mtDNA type frequencies between oceans indicated moderate (GST = 0.03) but statistically significant (p = 0.0007) genetic differentiation on a global scale. In addition, strong genetic differentiation was found between potential social groups (GST = 0.03-0.6), indicating matrilineal relatedness within groups. The global nucleotide diversity was quite low (pi = 0.004) implying a recent common mtDNA ancestry (< 100,000) years ago) and a young global population structure. However, within this time period, female dispersal has apparently been limited enough to allow the development of global mtDNA differentiation. The results are consistent with those from observational studies and whaling data indicating stable social affiliations, some degree of area fidelity and latitudinal range limitations in groups of females and juveniles.  相似文献   

3.
The mitochondrial DNA (mtDNA) control region and flanking tRNAs were sequenced from 76 mice collected at 60 localities extending from Egypt through Turkey, Yemen, Iran, Afghanistan, Pakistan, and Nepal to eastern Asia. Segments of the Y chromosome and of a processed p53 pseudogene (Psip53) were amplified from many of these mice and from others collected elsewhere in Eurasia and North Africa. The 251 mtDNA types, including 54 new ones reported here, now identified from commensal house mice (Mus musculus group) by sequencing this segment can be organized into four major lineages-domesticus, musculus, castaneus, and a new lineage found in Yemen. Evolutionary tree analysis suggested the domesticus mtDNAs as the sister group to the other three commensal mtDNA lineages and the Yemeni mtDNAs as the next oldest lineage. Using this tree and the phylogeographic approach, we derived a new model for the origin and radiation of commensal house mice whose main features are an origin in west-central Asia (within the present-day range of M. domesticus) and the sequential spreading of mice first to the southern Arabian Peninsula, thence eastward and northward into south-central Asia, and later from south-central Asia to north-central Asia (and thence into most of northern Eurasia) and to southeastern Asia. Y chromosomes with and without an 18-bp deletion in the Zfy-2 gene were detected among mice from Iran and Afghanistan, while only undeleted Ys were found in Turkey, Yemen, Pakistan, and Nepal. Polymorphism for the presence of a Psip53 was observed in Georgia, Iran, Turkmenistan, Afghanistan, and Pakistan. Sequencing of a 128-bp Psip53 segment from 79 commensal mice revealed 12 variable sites and implicated >/=14 alleles. The allele that appeared to be phylogenetically ancestral was widespread, and the greatest diversity was observed in Turkey, Afghanistan, Pakistan, and Nepal. Two mice provided evidence for a second Psip53 locus in some commensal populations.  相似文献   

4.
The genetic relationships between two Finno-Ugric-speaking populations, the Finns and the Finnish Saami (Lapps), were studied by using PCR for six nuclear-DNA marker loci, mitochondrial restriction-site polymorphism, and sequence variation of a 360-bp segment of the mitochondrial control region. The allele frequencies of each of the nuclear-DNA marker loci and the frequencies of mtDNA restriction haplotypes were significantly different between the populations. The Saami showed exceptionally low variation in their mtDNA restriction sites. The 9-bp deletion common in East Asian populations was not observed, nor did the haplotype data fit into the haplogroup categorization of Torroni et al. The average number of nucleotide substitutions from the mtDNA haplotype data indicated that the Finnish Saami may be closer to the Finns than to the other reference populations, whereas nuclear DNA suggested that the Finns are more closely related to the European reference populations than to the Finnish Saami. The similarity of the Finns to the other Europeans was even more pronounced according to the sequence data. We were unable to distinguish between the Finns and either the Swiss or Sardinian reference populations, whereas the Finnish Saami clearly stood apart. The Finnish Saami are distinct from other Circumarctic populations, although two of the lineages found among the Saami showed closer relationship to the Circumarctic than to the European lineages. The sequence data indicated an exceptionally high divergence for the Saami mtDNA control lineages. The distribution of the pairwise nucleotide differences in the Saami suggested that this population has not experienced an expansion similar to what was indicated for the Finns and the reference populations.  相似文献   

5.
To resolve the population genetic structure and phylogeography of the West Indian manatee (Trichechus manatus), mitochondrial (mt) DNA control region sequences were compared among eight locations across the western Atlantic region. Fifteen haplotypes were identified among 86 individuals from Florida, Puerto Rico, the Dominican Republic, Mexico, Columbia, Venezuela, Guyana and Brazil. Despite the manatee's ability to move thousands of kilometers along continental margins, strong population separations between most locations were demonstrated with significant haplotype frequency shifts. These findings are consistent with tagging studies which indicate that stretches of open water and unsuitable coastal habitats constitute substantial barriers to gene flow and colonization. Low levels of genetic diversity within Florida and Brazilian samples might be explained by recent colonization into high latitudes or bottleneck effects. Three distinctive mtDNA lineages were observed in an intraspecific phylogeny of T. manatus, corresponding approximately to: (i) Florida and the West Indies; (ii) the Gulf of Mexico to the Caribbean rivers of South America; and (iii) the northeast Atlantic coast of South America. These lineages, which are not concordant with previous subspecies designations, are separated by sequence divergence estimates of d = 0.04-0.07, approximately the same level of divergence observed between T. manatus and the Amazonian manatee (T. inunguis, n = 16). Three individuals from Guyana, identified as T. manatus, had mtDNA haplotypes which are affiliated with the endemic Amazon form T. inunguis. The three primary T. manatus lineages and the T. inunguis lineage may represent relatively deep phylogeographic partitions which have been bridged recently due to changes in habitat availability (after the Wisconsin glacial period, 10 000 B P), natural colonization, and human-mediated transplantation.  相似文献   

6.
The parthenogenetic tick Amblyomma rotundatum, a Central and South American species, has become established in southern Florida. The date of introduction is unknown, but it is suspected to be either during the 1930s, when 1 of its natural hosts, the giant or marine toad, Bufo marinus, was introduced to southern Florida as a potential biological control of pest beetles in sugar cane fields, or between 1955 and 1964 when specimens of B. marinus were accidentally or deliberately released in the greater Miami area. Several museum specimens of this toad collected in the Miami area 25 April 1979 had nymphal and adult A. rotundatum attached. Subsequent examination of living giant toads collected at another Miami area site from 1983 through 1985 revealed larval, nymphal, and adult A. rotundatum and confirmed colonization of this tick. Under laboratory conditions, another neotropical amphibian and reptile tick, Amblyomma dissimile, is capable of transmitting Cowdria ruminantium, the causative agent of heartwater, a disease present in the Caribbean area. Therefore, we suggest that A. rotundatum should also be tested for vectorial competence.  相似文献   

7.
Variation in mtDNA has been used extensively to draw inferences in phylogenetics and population biology. In the majority of eukaryotes investigated, transmission of mtDNA is uniparental and clonal, with genotypic diversity arising from mutation alone. In other eukaryotes, the transmission of mtDNA is biparental or primarily uniparental with the possibility of "leakage" from the minority parent. In these cases, heteroplasmy carries the potential for recombination between mtDNAs of different descent. In fungi, such mtDNA recombination has long been documented but only in laboratory experiments and only under conditions in which heteroplasmy is ensured. Despite this experimental evidence, mtDNA recombination has not been to our knowledge documented in a natural population. Because evidence from natural populations is prerequisite to understanding the evolutionary impact of mtDNA recombination, we investigated the possibility of mtDNA recombination in an organism with the demonstrated potential for heteroplasmy in laboratory matings. Using nucleotide sequence data, we report here that the genotypic structure of mtDNA in a natural population of the basidiomycete fungus Armillaria gallica is inconsistent with purely clonal mtDNA evolution and is fully consistent with mtDNA recombination.  相似文献   

8.
Central Asia is a vast region at the crossroads of different habitats, cultures, and trade routes. Little is known about the genetics and the history of the population of this region. We present the analysis of mtDNA control-region sequences in samples of the Kazakh, the Uighurs, the lowland Kirghiz, and the highland Kirghiz, which we have used to address both the population history of the region and the possible selective pressures that high altitude has on mtDNA genes. Central Asian mtDNA sequences present features intermediate between European and eastern Asian sequences, in several parameters-such as the frequencies of certain nucleotides, the levels of nucleotide diversity, mean pairwise differences, and genetic distances. Several hypotheses could explain the intermediate position of central Asia between Europe and eastern Asia, but the most plausible would involve extensive levels of admixture between Europeans and eastern Asians in central Asia, possibly enhanced during the Silk Road trade and clearly after the eastern and western Eurasian human groups had diverged. Lowland and highland Kirghiz mtDNA sequences are very similar, and the analysis of molecular variance has revealed that the fraction of mitochondrial genetic variance due to altitude is not significantly different from zero. Thus, it seems unlikely that altitude has exerted a major selective pressure on mitochondrial genes in central Asian populations.  相似文献   

9.
Variation in the mitochondrial DNA (mtDNA) control region as detected by sequence-specific oligonucleotide (SSO) probes is described for 595 individuals from six European or European-derived populations. Estimates of diversity for mtDNA types exceed 0.91 in all populations, while 50% of the 158 types which were observed occur only once. Of 68 shared types, most occur rarely (< 3% of the total population); only one type occurs at a frequency greater than 10%, and it is present at comparable frequencies in all six populations (18-29%). An analysis of molecular variance (AMOVA) incorporating genetic distances between types shows that 100% of the variation present in the total sample is attributable to within-population diversity, while there are essentially no between-population differences. Another AMOVA was performed for the first hypervariable region SSO sites only, which included this sample plus an additional 537 SSO types from mine more European populations that were inferred from published mtDNA control region sequence data. Similar results were obtained, with over 99% of the variation overall attributable to within-population differences, and less than 1% of the variation attributable to between-population differences. The Saami were the most different from other populations, which had been observed in an earlier study of nucleotide sequence data. Overall, there is no statistically significant heterogeneity for European populations (p > 0.001), and these groups are virtually indistinguishable with respect to mtDNA SSO types. These results demonstrate the utility of mtDNA typing for forensic investigations.  相似文献   

10.
Native Americans have been classified into four founding haplogroups with as many as seven founding lineages based on mtDNA RFLPs and DNA sequence data. mtDNA analysis was completed for 83 Yanomami from eight villages in the Surucucu and Catrimani Plateau regions of Roraima in northwestern Brazil. Samples were typed for 15 polymorphic mtDNA sites (14 RFLP sites and 1 deletion site), and a subset was sequenced for both hypervariable regions of the mitochondrial D-loop. Substantial mitochondrial diversity was detected among the Yanomami, five of seven accepted founding haplotypes and three others were observed. Of the 83 samples, 4 (4.8%) were lineage B1, 1 (1.2%) was lineage B2, 31 (37.4%) were lineage C1, 29 (34.9%) were lineage C2, 2 (2.4%) were lineage D1, 6 (7.2%) were lineage D2, 7 (8.4%) were a haplotype we designated "X6," and 3 (3.6%) were a haplotype we designated "X7." Sequence analysis found 43 haplotypes in 50 samples. B2, X6, and X7 are previously unrecognized mitochondrial founding lineage types of Native Americans. The widespread distribution of these haplotypes in the New World and Asia provides support for declaring these lineages to be New World founding types.  相似文献   

11.
High simian immunodeficiency virus (SIV) seroprevalence rates have been reported in the different African green monkey (AGM) subspecies. Genetic diversity of these viruses far exceeds the diversity observed in the other lentivirus-infected human and nonhuman primates and is thought to reflect ancient introduction of SIV in the AGM population. We investigate here genetic diversity of SIVagm in wild-living AGM populations from the same geographical locale (i.e., sympatric population) in Senegal. For 11 new strains, we PCR amplified and sequenced two regions of the genome spanning the first tat exon and part of the transmembrane glycoprotein. Phylogenetic analysis of these sequences shows that viruses found in sympatric populations cluster into distinct lineages, with at least two distinct genotypes in each troop. These data strongly suggest an ancient introduction of these divergent viruses in the AGM population.  相似文献   

12.
The complete mitochondrial DNA (mtDNA) molecule of the domestic sheep, Ovis aries, was sequenced, together with part of the mtDNA of a specimen representing the other major O. aries haplotype group. The length of the complete ovine mtDNA presented is 16,616 nucleotides (nt). This length is not absolute, however, due to heteroplasmy caused by the occurrence of different numbers of a 75-nt-long tandem repeat in the control region. The sequence data were included in analyses of intraspecific ovine molecular differences, molecular comparisons with bovine mtDNAs, and phylogenetic analyses based on complete mtDNAs. The comparisons with bovine mtDNAs were based on the central domains of the ovine control regions, representing both major ovine haplotype groups, and the corresponding domains of Bos taurus and B. indicus. The comparisons showed that the difference between the bovids was 1.4 times greater than the intraspecific ovine difference. These findings suggest that the strains of wild sheep from which domestic sheep originated were more closely related than were the B. primigenius subspecies which gave rise to B. indicus and B. taurus cattle. Datings based on complete mtDNAs suggest that the bovine and ovine lineages diverged about 30 million years before present. This dating is considerably earlier than that proposed previously.  相似文献   

13.
The mtDNA of most Native Americans has been shown to cluster into four lineages, or haplogroups. This study provides data on the haplogroup affiliation of nearly 500 Native North Americans including members of many tribal groups not previously studied. Phenetic cluster analysis shows a fundamental difference among 1) Eskimos and northern Na-Dene groups, which are almost exclusively mtDNA haplogroup A, 2) tribes of the Southwest and adjacent regions, predominantly Hokan and Uto-Aztecan speakers, which lack haplogroup A but exhibit high frequencies of haplogroup B, 3) tribes of the Southwest and Mexico lacking only haplogroup D, and 4) a geographically heterogeneous group of tribes which exhibit varying frequencies of all four haplogroups. There is some correspondence between language group affiliations and the frequencies of the mtDNA haplogroups in certain tribes, while geographic proximity appears responsible for the genetic similarity among other tribes. Other instances of similarity among tribes suggest hypotheses for testing with more detailed studies. This study also provides a context for understanding the relationships between ancient and modern populations of Native Americans.  相似文献   

14.
Data on polymorphism of the control region of mitochondrial DNA (mtDNA) in Eastern Slavs were analyzed by the median network method. A bimodal distribution of pairwise nucleotide differences between types of the mtDNA control region was revealed; distribution was similar to that found in southern European populations. The nucleotide diversity of mtDNA types in Eastern Slavs corresponded to an evolutionary age of 10-40 thousand years. Characteristics of the mitochondrial portrait of Eastern Slavs are discussed in terms of formation of the European population in Neolith.  相似文献   

15.
Striped bass Morone saxatilis populations in drainages along the Gulf of Mexico coast (Gulf) were depleted in the 1950s and 1960s, probably because of anthropogenic influences. It is believed that only the Apalachicola-Chattahoochee-Flint (A-C-F) river system continually supported a naturally reproducing population of Gulf lineage. Striped bass juveniles of Atlantic coast (Atlantic) ancestry were introduced to restore population abundances in the A-C-F from the late 1960s to the mid 1970s and in many other Gulf rivers from the 1960s to the present. We previously identified mtDNA polymorphisms that were unique to approximately 60% of striped bass from the A-C-F and which confirmed the continued successful natural reproduction of striped bass of Gulf maternal ancestry within the system. However, the genetic relatedness of the extant A-C-F population to 'pure' Gulf striped bass was not addressed. In this study, we determined the frequency of a diagnostic mtDNA XbaI polymorphism in samples of 'pure' Gulf striped bass that were collected from the A-C-F prior to the introduction of Atlantic fish, that were obtained from museum collections, and that were originally preserved in formalin. PCR primers were developed that allowed for amplification of a 191-bp mtDNA fragment that contained the diagnostic XbaI restriction site. Using RFLP and direct sequence analyses of the PCR amplicons, we found no significant differences in mtDNA XbaI genotype frequencies between the archived samples and extant A-C-F samples collected over a 15-year period. This indicates that significant maternally mediated introgression of Atlantic mtDNA genomes into the A-C-F gene pool has not occurred. Additionally, we found no evidence of the unique Gulf mtDNA genotype in striped bass from extant populations in Texas, Louisiana and the Mississippi River. These results highlight the importance of the A-C-F as a repository of striped bass to restore extirpated Gulf populations and the potential use of museum collections in retrospective population studies.  相似文献   

16.
We used mitochondrial DNA (mtDNA) and Y-chromosome DNA polymorphisms to analyze the ethnic origin of maternal and paternal lineages in two Amerindian subpopulations from northwestern Argentina. One of the subpopulations was from San Salvador de Jujuy, located 1200 m above sea level. The second subpopulation inhabits the Quebrada de Humahuaca area at altitudes ranging from 2500 to 3500 m. Both subpopulations have the same ethnic background. All mtDNA haplotypes were identified as Amerindian with a frequency of 64.6% of the B form (9-bp deletion in mtDNA region V). Because all Central Andean Amerindian populations studied so far exhibit high frequencies of the B haplotype, we propose that they probably are derived from a common ancestral population that inhabited the Central Andes 6000-8000 years B.P. The presence of paternal directional mating (asymmetric contribution of one parental lineage to interethnic gene mixtures) was demonstrated by the finding of an average introgression of 40.5% Spanish Y chromosomes into our Amerindian sample. This introgression was more evident at low altitude than at high altitude, with frequencies of 64.3% in San Salvador de Jujuy (low altitude) and 27.6% in Quebrada de Humahuaca (high altitude) (p < 0.05). The San Salvador de Jujuy subpopulation also showed a significantly higher Y-chromosome gene variability than the Quebrada de Humahuaca subpopulation. These findings are in good agreement with historical reports indicating that the colonization of South America was undertaken by men who usually practiced polygamous unions with Amerindian women and that San Salvador de Jujuy was the main northwestern Argentinian region of European to Amerindian gene admixture. We found 16.7% of cases with Spanish Y chromosomes and Amerindian family names, and the same percentage with Amerindian Y chromosomes and Hispanic names. The former group probably is the result of unions between Hispanic men, who transmitted the Y chromosome, and Amerindian women, who transmitted the family name to the progeny. The latter group likely illustrates the practice of changing names from Amerindian to Hispanic during the baptism of native Americans in colonial times.  相似文献   

17.
On the basis of comprehensive RFLP analysis, it has been inferred that approximately 97% of Native American mtDNAs belong to one of four major founding mtDNA lineages, designated haplogroups "A"-"D." It has been proposed that a fifth mtDNA haplogroup (haplogroup X) represents a minor founding lineage in Native Americans. Unlike haplogroups A-D, haplogroup X is also found at low frequencies in modern European populations. To investigate the origins, diversity, and continental relationships of this haplogroup, we performed mtDNA high-resolution RFLP and complete control region (CR) sequence analysis on 22 putative Native American haplogroup X and 14 putative European haplogroup X mtDNAs. The results identified a consensus haplogroup X motif that characterizes our European and Native American samples. Among Native Americans, haplogroup X appears to be essentially restricted to northern Amerindian groups, including the Ojibwa, the Nuu-Chah-Nulth, the Sioux, and the Yakima, although we also observed this haplogroup in the Na-Dene-speaking Navajo. Median network analysis indicated that European and Native American haplogroup X mtDNAs, although distinct, nevertheless are distantly related to each other. Time estimates for the arrival of X in North America are 12,000-36,000 years ago, depending on the number of assumed founders, thus supporting the conclusion that the peoples harboring haplogroup X were among the original founders of Native American populations. To date, haplogroup X has not been unambiguously identified in Asia, raising the possibility that some Native American founders were of Caucasian ancestry.  相似文献   

18.
A total of nearly 800 base pairs of mitochondrial DNA sequence was assayed in each of 52 musk turtles (Sternotherus minor) collected across the species' range in the south-eastern USA. About one-half of the sequence information in effect was accessed by conventional recognition-site assays of the entire mtDNA molecule; the remainder came from direct sequence assays of a normally hypervariable 5' section of the noncoding control region. The two assay methods produced essentially nonoverlapping sets of variable character states that were compared with respect to magnitudes and phylogeographic patterns of mtDNA variation. The two assay procedures yielded nearly identical outcomes with regard to: (a) total levels of species-wide mtDNA genetic variation; (b) mean levels of within-locale variation; (c) extremely high population genetic structure; (d) a phylogenetically significant separation of samples from the north-western half of the species' range vs. those in the south-eastern segment; and (e) considerably lower genetic variability within the north-western clade. The micro- and macro-phylogeographic mtDNA patterns in the musk turtle are consistent with a low-dispersal natural history, and with a suspected longer-term biogeographic history of the species, respectively.  相似文献   

19.
DNA analysis is making a valuable contribution to the understanding of human evolution [1]. Much attention has focused on mitochondrial DNA (mtDNA) [2] and the Y chromosome [3] [4], both of which escape recombination and so provide information on maternal and paternal lineages, respectively. It is often assumed that the polymorphisms observed at loci on mtDNA and the Y chromosome are selectively neutral and, therefore, that existing patterns of molecular variation can be used to deduce the histories of populations in terms of drift, population movements, and cultural practices. The coalescence of the molecular phylogenies of mtDNA and the Y chromosome to recent common ancestors in Africa [5] [6], for example, has been taken to reflect a recent origin of modern human populations in Africa. An alternative explanation, though, could be the recent selective spread of mtDNA and Y chromosome haplotypes from Africa in a population with a more complex history [7]. It is therefore important to establish whether there are selective differences between classes (haplotypes) of mtDNA and Y chromosomes and, if so, whether these differences could have been sufficient to influence the distributions of haplotypes in existing populations. A precedent for this hypothesis has been established for mtDNA in that one mtDNA background increases susceptibility to Leber hereditary optic neuropathy [8]. Although studies of nucleotide diversity in global samples of Y chromosomes have suggested an absence of recent selective sweeps or bottlenecks [9], selection may, in principle, be very important for the Y chromosome because it carries several loci affecting male fertility [10] [11] and as many as 5% of males are infertile [11] [12]. Here, we show that one class of infertile males, PRKX/PRKY translocation XX males, arises predominantly on a particular Y haplotypic background. Selection is, therefore, acting on Y haplotype distributions in the population.  相似文献   

20.
In this study, we analyzed the mitochondrial DNA (mtDNA) variation in 202 individuals representing one Itel'men and three Koryak populations from different parts of the Kamchatka peninsula. All mtDNAs were subjected to high resolution restriction (RFLP) analysis and control region (CR) sequencing, and the resulting data were combined with those available for other Siberian and east Asian populations and subjected to statistical and phylogenetic analysis. Together, the Koryaks and Itel'men were found to have mtDNAs belonging to three (A, C, and D) of the four major haplotype groups (haplogroups) observed in Siberian and Native American populations (A-D). In addition, they exhibited mtDNAs belonging to haplogroups G, Y, and Z, which were formerly called "Other" mtDNAs. While Kamchatka harbored the highest frequencies of haplogroup G mtDNAs, which were widely distributed in eastern Siberian and adjacent east Asian populations, the distribution of haplogroup Y was restricted within a relatively small area and pointed to the lower Amur River-Sakhalin Island region as its place of origin. In contrast, the pattern of distribution and the origin of haplogroup Z mtDNAs remained unclear. Furthermore, phylogenetic and statistical analyses showed that Koryaks and Itel'men had stronger genetic affinities with eastern Siberian/east Asian populations than to those of the north Pacific Rim. These results were consistent with colonization events associated with the relatively recent immigration to Kamchatka of new tribes from the Siberian mainland region, although remnants of ancient Beringian populations were still evident in the Koryak and Itel'men gene pools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号