首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Plastic solar cells bear the potential for large‐scale power generation based on materials that provide the possibility of flexible, lightweight, inexpensive, efficient solar cells. Since the discovery of the photoinduced electron transfer from a conjugated polymer to fullerene molecules, followed by the introduction of the bulk heterojunction (BHJ) concept, this material combination has been extensively studied in organic solar cells, leading to several breakthroughs in efficiency, with a power conversion efficiency approaching 5 %. This article reviews the processes and limitations that govern device operation of polymer:fullerene BHJ solar cells, with respect to the charge‐carrier transport and photogeneration mechanism. The transport of electrons/holes in the blend is a crucial parameter and must be controlled (e.g., by controlling the nanoscale morphology) and enhanced in order to allow fabrication of thicker films to maximize the absorption, without significant recombination losses. Concomitantly, a balanced transport of electrons and holes in the blend is needed to suppress the build‐up of the space–charge that will significantly reduce the power conversion efficiency. Dissociation of electron–hole pairs at the donor/acceptor interface is an important process that limits the charge generation efficiency under normal operation condition. Based on these findings, there is a compromise between charge generation (light absorption) and open‐circuit voltage (VOC) when attempting to reduce the bandgap of the polymer (or fullerene). Therefore, an increase in VOC of polymer:fullerene cells, for example by raising the lowest unoccupied molecular orbital level of the fullerene, will benefit cell performance as both fill factor and short‐circuit current increase simultaneously.  相似文献   

10.
Solution‐processed bulk‐heterojunction solar cells have gained serious attention during the last few years and are becoming established as one of the future photovoltaic technologies for low‐cost power production. This article reviews the highlights of the last few years, and summarizes today's state‐of‐the‐art performance. An outlook is given on relevant future materials and technologies that have the potential to guide this young photovoltaic technology towards the magic 10% regime. A cost model supplements the technical discussions, with practical aspects any photovoltaic technology needs to fulfil, and answers to the question as to whether low module costs can compensate lower lifetimes and performances.  相似文献   

11.
12.
13.
An organic solar cell (OSCs) containing double bulk heterojunction (BHJ) layers, namely, double‐BHJ OSCs is constructed via stamp transferring of low bandgap BHJ atop of mediate bandgap active layers. Such devices allow a large gain in photocurrent to be obtained due to enhanced photoharvest, without suffering much from the fill factor drop usually seen in thick‐layer‐based devices. Overall, double‐BHJ OSC with optimal ≈50 nm near‐infrared PDPP3T:PC71BM layer atop of ≈200 nm PTB7‐Th:PC71BM BHJ results in high power conversion efficiencies over 12%.  相似文献   

14.
15.
While organic light‐emitting diodes (OLEDs) covering all colors of the visible spectrum are widespread, suitable organic emitter materials in the near‐infrared (nIR) beyond 800 nm are still lacking. Here, the first OLED based on single‐walled carbon nanotubes (SWCNTs) as the emitter is demonstrated. By using a multilayer stacked architecture with matching charge blocking and charge‐transport layers, narrow‐band electroluminescence at wavelengths between 1000 and 1200 nm is achieved, with spectral features characteristic of excitonic and trionic emission of the employed (6,5) SWCNTs. Here, the OLED performance is investigated in detail and it is found that local conduction hot‐spots lead to pronounced trion emission. Analysis of the emissive dipole orientation shows a strong horizontal alignment of the SWCNTs with an average inclination angle of 12.9° with respect to the plane, leading to an exceptionally high outcoupling efficiency of 49%. The SWCNT‐based OLEDs represent a highly attractive platform for emission across the entire nIR.  相似文献   

16.
17.
18.
19.
利用数值方法研究了以P3HT∶PCBM为活性材料的本体异质结有机太阳能电池的短路电流密度与带隙宽度、活性层厚度以及温度的关系。结果表明:短路电流密度随带隙宽度的增大呈线性增大;随活性层厚度的增加呈抛物线分布,在160nm附近短路电流密度有最大值;随温度升高呈线性增大趋势。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号