首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Excessive production of reactive oxygen species can lead to alteration of cellular functions responsible for many diseases including cardiovascular diseases, neurodegenerative diseases, cancer, and aging. Hydroxyl radical is a short-lived radical which is considered very aggressive due to its high reactivity toward biological molecules. In this study, a COumarin-NEutral Red (CONER) nanoprobe was developed for detection of hydroxyl radical based on the ratiometric fluorescence signal between 7-hydroxy coumarin 3-carboxylic acid and neutral red dyes. Biocompatible poly lactide-co-glycolide (PLGA) nanoparticles containing encapsulated neutral red were produced using a coumarin 3-carboxylic acid conjugated poly(sodium N-undecylenyl-Nε-lysinate) (C3C-poly-Nε-SUK) as moiety reactive to hydroxyl radicals. The response of the CONER nanoprobe was dependent on various parameters such as reaction time and nanoparticle concentration. The probe was selective for hydroxyl radicals as compared with other reactive oxygen species including O(2)(?-), H(2)O(2), (1)O(2), and OCl(-). Furthermore, the CONER nanoprobe was used to detect hydroxyl radicals in vitro using viable breast cancer cells exposed to oxidative stress. The results suggest that this nanoprobe represents a promising approach for detection of hydroxyl radicals in biological systems.  相似文献   

2.
Periodic hexagonal spherical nanoparticle arrays are fabricated by a sacrificial colloidal monolayer template route by chemical deposition and further physical deposition. The regular network‐structured arrays are first templated by colloidal monolayers and then they are changed to novel periodic spherical nanoparticle arrays by further sputtering deposition due to multiple direction deposition and shadow effect between adjacent nanoparticles. The nanogaps between two adjacent spherical nanoparticles can be well tuned by controlling deposition time. Such periodic nanoparticle arrays with gold coatings demonstrate a very stable and high sensitive surface‐enhanced Raman scattering spectroscopy (SERS) performance. The periodic nanoparticle arrays with 10 nm gaps display much stronger SERS enhancement due to electromagnetic coupling. The chemically modified nanoparticle arrays show good hydrophobicity, which shorten process of detecting probe molecules using them as SERS‐active substrates by localized concentration of droplet evaporation and a low detection limit of 10−12 m R6G can be achieved without solution wasting in a short time. The hydrophobic substrate offers a simple, convenient, and economical method to examine SERS performance by rapid concentration of solution on it and it is highly helpful to improve its practical applications in portable Raman detecting devices to detect organic molecules.  相似文献   

3.
Iron-oxide nanoparticle monolayers and multilayers were assembled using dc electrophoretic deposition. The rate of deposition and the total particle deposition were controlled by varying the concentration of nanoparticles and the deposition time, respectively. Using scanning electron microscopy, we performed a time-resolved study that demonstrated the growth of the monolayer from a single isolated nanoparticle to a nearly complete layer. We observed tight, hexagonal packing of the nanoparticles indicating strong particle-particle interaction. Multilayer growth was assessed using scanning electron microscopy and atomic force microscopy, revealing a monolayer-by-monolayer growth process.  相似文献   

4.
Porous films of tantalum (Ta) and its oxides exhibit numerous properties suitable for high surface area applications, mainly in the semiconductor and bio-implant industries. Such films can be developed by Ta nanoparticle deposition using DC magnetron sputtering with gas aggregation. In order to engineer films of desirable properties, accurate control and in-depth understanding of the processes and parameters of nanoparticle growth, deposition and coalescence are crucial. Of utmost importance is to control the film’s porosity, since it determines many of the other physical properties. To this end, we performed a number of classical Molecular Dynamics simulations to study the coalescence of two or more Ta nanoparticles. Temperature, relative size and crystallographic orientation, defect content, degree of crystallinity and deposition rate effects were taken into account, and a mapping of the sintering processes was acquired. A broad range of possible interaction mechanisms were observed, from simple nanoparticle reorientation in order to achieve epitaxial configuration, to atomic adsorption, neck formation, twinning within the nanoparticles and full consolidation into a single, larger nanoparticle. The parameters studied are directly linked to experimental deposition parameters; therefore, fitting them accordingly can lead to growth of films with bespoke properties.  相似文献   

5.
The fields of bioscience and nanomedicine demand precise thermometry for nanoparticle heat characterization down to the nanoscale regime. Since current methods often use indirect and less accurate techniques to determine the nanoparticle temperature, there is a pressing need for a direct and reliable element‐specific method. In‐situ extended X‐ray absorption fine structure (EXAFS) spectroscopy is used to determine the thermo‐optical properties of plasmonic branched gold nanoparticles upon resonant laser illumination. With EXAFS, the direct determination of the nanoparticle temperature increase upon laser illumination is possible via the thermal influence on the gold lattice parameters. More specifically, using the change of the Debye–Waller term representing the lattice disorder, the temperature increase is selectively measured within the plasmonic branched nanoparticles upon resonant laser illumination. In addition, the signal intensity shows that the nanoparticle concentration in the beam more than doubles during laser illumination, thereby demonstrating that photothermal heating is a dynamic process. A comparable temperature increase is measured in the nanoparticle suspension using a thermocouple. This good correspondence between the temperature at the level of the nanoparticle and at the level of the suspension points to an efficient heat transfer between the nanoparticle and the surrounding medium, thus confirming the potential of branched gold nanoparticles for hyperthermia applications. This work demonstrates that X‐ray absorption spectroscopy‐based nanothermometry could be a valuable tool in the fast‐growing number of applications of plasmonic nanoparticles, particularly in life sciences and medicine.  相似文献   

6.
Initiated chemical vapor deposition (iCVD) enables the uniform growth of polyglycidol (PGL) within mesoporous layers of TiO2 nanoparticle networks. Through the cationic ring opening polymerization of glycidol, conformal deposition of PGL by iCVD results in up to 91% of the available pore space being filled. This yields polymer nanocomposites with high nanoparticle loading of 82 wt% and 54 vol%. The glass transition of the PGL nanocomposite is found to increase significantly by 50 °C–60 °C compared to the bulk PGL polymer. This marked temperature rise has been attributed to significant hydrogen bonding interaction of the oxygen and hydroxyl groups in the polymer with the hydroxyl groups on the surface of the TiO2 nanoparticles. Such interactions under polymer confinement are only possible as a result of the tight integration of the polymer and inorganic materials afforded by the iCVD approach.  相似文献   

7.
Metal oxide nanoparticles have marked antibacterial activity. The toxic effect of these nanoparticles, such as those comprised of ZnO, has been found to occur due to an interaction of the nanoparticle surface with water, and to increase with a decrease in particle size. In the present study, we tested the ability of ZnO nanoparticles to affect the viability of the pathogenic yeast, Candida albicans (C. albicans). A concentration-dependent effect of ZnO on the viability of C. albicans was observed. The minimal fungicidal concentration of ZnO was found to be 0.1 mg ml(-1) ZnO; this concentration caused an inhibition of over 95% in the growth of C. albicans. ZnO nanoparticles also inhibited the growth of C. albicans when it was added at the logarithmic phase of growth. Addition of histidine (a quencher of hydroxyl radicals and singlet oxygen) caused reduction in the effect of ZnO on C. albicans depending on its concentration. An almost complete elimination of the antimycotic effect was achieved following addition of 5 mM of histidine. Exciting the ZnO by visible light increased the yeast cell death. The effects of histidine suggest the involvement of reactive oxygen species, including hydroxyl radicals and singlet oxygen, in cell death. In light of the above results it appears that metal oxide nanoparticles may provide a novel family of fungicidal compounds.  相似文献   

8.
Modelling and calculations are presented for the spectrum of initial DNA damage produced by 100 eV to 100 keV energetic electrons. Analysis of the initial spectrum of damage, based upon the source (direct energy deposition and reactions with diffusing OH radicals) and complexity of damage, indicates that the majority of the interactions cause no damage to DNA and any damage that does occur is most likely to be a simple single strand break (SSB). The fraction of complex damage for energetic electrons is lower than that induced by low energy electrons and ultrasoft X rays but still represents an appreciable fraction (20-30%) of the total double strand breaks (DSBs). Relative yields of strand breaks are investigated for dependence on the assumed energy deposition threshold and on the probability of the hydroxyl radicals to produce a single strand break. The ratio of direct to indirect damage does not change significantly across the electron energy range investigated and the values lie well within the experimental data. The direct energy deposition in DNA represents a larger proportion of the damage although the contribution from the hydroxyl radicals is also substantial, both in terms of the absolute yield of the breaks and the complexity of the damage.  相似文献   

9.
The overall objective of this study was to compare the effects of Au/Fe and Fe nanoparticles on the growth and performance of Serratia Jl0300. The nanoparticle effect was quantified not only by the bacterial growth on agar plate after 1 hour interaction with the nanoparticles, but also by its production of a biosurfactant from used vegetable oil. The nanoparticles were prepared using the foam method. The concentrations of the nanoparticles used for the bacterial interaction study were varied from 1 mg/L to 1 g/L. The test results showed that the effect of nanoparticles on the bacterial growth and biosurfactant production varied with nanoparticle type, concentrations, and interaction time with the bacteria. Au/Fe nanoparticles didn't show toxicity to Serratia after short time (1 h) exposure, while during 8 days fermentation Au/Fe nanoparticles inhibited the growth of Serratia as well as the biosurfactant production when the concentration of the nanoparticles was higher than 10 mg/L. Fe nanoparticles showed inhibition effects to bacterial growth both after short time and long time interaction with Serratia, as well as to biosurfactant production when its concentration was higher than 100 mg/L. Based on the trends observed in this study, analytical models have been developed to predict the bacterial growth and biosurfactant production with varying concentrations of nanoparticles.  相似文献   

10.
Simulated sunlight has promise as a light source able to alleviate the severe pain associated with patients during photodynamic therapy (PDT); however, low sunlight utilization efficiency of traditional photosensitizers dramatically limits its application. Titanium‐dioxide‐nanoparticle–gold‐nanocluster–graphene (TAG) heterogeneous nanocomposites are designed to efficiently utilize simulated sunlight for melanoma skin cancer PDT. The narrow band gap in gold nanoclusters (Au NCs), and staggered energy bands between Au NCs, titanium dioxide nanoparticles (TiO2 NPs), and graphene can result in efficient utilization of simulated sunlight and separation of electron–hole pairs, facilitating the production of abundant hydroxyl and superoxide radicals. Under irradiation of simulated sunlight, TAG nanocomposites can trigger a series of toxicological responses in mouse B16F1 melanoma cells, such as intracellular reactive oxygen species production, glutathione depletion, heme oxygenase‐1 expression, and mitochondrial dysfunctions, resulting in severe cell death. Furthermore, intravenous or intratumoral administration of biocompatible TAG nanocomposites in B16F1‐tumor‐xenograft‐bearing mice can significantly inhibit tumor growth and cause severe pathological tumor tissue changes. All of these results demonstrate prominent simulated sunlight‐mediated PDT effects.  相似文献   

11.
Plasmonic nanoparticles are commonly used as optical transducers in sensing applications. The optical signals resulting from the interaction of analytes and plamsonic nanoparticles are influenced by surrounding physical structures where the nanoparticles are located. This paper proposes inverse opal photonic crystal hydrogel as 3D structure to improve Raman signals from plasmonic staining. By hybridization of the plasmonic nanoparticles and photonic crystal, surface‐enhanced Raman spectroscopy (SERS) analysis of multiplexed protein is realized. It benefits the Raman analysis by providing high‐density “hot spots” in 3D and extra enhancement of local electromagnetic field at the band edge of PhC with periodic refractive index distribution. The strong interaction of light and the hybrid 3D nanostructure offers new insights into plasmonic nanoparticle applications and biosensor design.  相似文献   

12.
We have developed easy-to-use homogeneous methods utilizing time-resolved fluorescence resonance energy transfer (TR-FRET) and fluorescence quenching for quantification of eukaryotic cells. The methods rely on a competitive adsorption of cells and fluorescently labeled protein onto citrate-stabilized colloidal gold nanoparticles or carboxylate-modified polystyrene nanoparticles doped with an Eu(III) chelate. In the gold nanoparticle sensor, the adsorption of the labeled protein to the gold nanoparticles leads to quenching of the fluorochrome. Eukaryotic cells reduce the adsorption of labeled protein to the gold particles increasing the fluorescence signal. In the Eu(III) nanoparticle sensor, the time-resolved fluorescence resonance energy transfer between the nanoparticles and an acceptor-labeled protein is detected; a decrease in the magnitude of the time-resolved energy transfer signal (sensitized time-resolved fluorescence) is proportional to the cell-nanoparticle interaction and subsequent reduced adsorption of the labeled protein. Less than five cells were detected and quantified with the nanoparticle sensors in the homogeneous microtiter assay format with a coefficient of variation of 6% for the gold and 12% for the Eu(III) nanoparticle sensor. The Eu(III) nanoparticle sensor was also combined with a cell impermeable nucleic acid dye assay to measure cell viability in a single tube test with cell counts below 1000 cells/tube. This sensitive and easy-to-use nanoparticle sensor combined with a viability test for a low concentration of cells could potentially replace existing microscopic methods in biochemical laboratories.  相似文献   

13.
Near‐field plasmonic coupling and local field enhancement in metal nanoarchitectures, such as arrangements of nanoparticle clusters, have application in many technologies from medical diagnostics, solar cells, to sensors. Although nanoparticle‐based cluster assemblies have exhibited signal enhancements in surface‐enhanced Raman scattering (SERS) sensors, it is challenging to achieve high reproducibility in SERS response using low‐cost fabrication methods. Here an innovative method is developed for fabricating self‐organized clusters of metal nanoparticles on diblock copolymer thin films as SERS‐active structures. Monodisperse, colloidal gold nanoparticles are attached via a crosslinking reaction on self‐organized chemically functionalized poly(methyl methacrylate) domains on polystyrene‐block‐poly(methyl methacrylate) templates. Thereby nanoparticle clusters with sub‐10‐nanometer interparticle spacing are achieved. Varying the molar concentration of functional chemical groups and crosslinking agent during the assembly process is found to affect the agglomeration of Au nanoparticles into clusters. Samples with a high surface coverage of nanoparticle cluster assemblies yield relative enhancement factors on the order of 109 while simultaneously producing uniform signal enhancements in point‐to‐point measurements across each sample. High enhancement factors are associated with the narrow gap between nanoparticles assembled in clusters in full‐wave electromagnetic simulations. Reusability for small‐molecule detection is also demonstrated. Thus it is shown that the combination of high signal enhancement and reproducibility is achievable using a completely non‐lithographic fabrication process, thereby producing SERS substrates having high performance at low cost.  相似文献   

14.
Progress of thermal tumor therapies and their translation into clinical practice are limited by insufficient nanoparticle concentration to release therapeutic heating at the tumor site after systemic administration. Herein, the use of Janus magneto‐plasmonic nanoparticles, made of gold nanostars and iron oxide nanospheres, as efficient therapeutic nanoheaters whose on‐site delivery can be improved by magnetic targeting, is proposed. Single and combined magneto‐ and photo‐thermal heating properties of Janus nanoparticles render them as compelling heating elements, depending on the nanoparticle dose, magnetic lobe size, and milieu conditions. In cancer cells, a much more effective effect is observed for photothermia compared to magnetic hyperthermia, while combination of the two modalities into a magneto‐photothermal treatment results in a synergistic cytotoxic effect in vitro. The high potential of the Janus nanoparticles for magnetic guiding confirms them to be excellent nanostructures for in vivo magnetically enhanced photothermal therapy, leading to efficient tumor growth inhibition.  相似文献   

15.
Colloidal CdS nanoparticles are conjugated with a variety of proteins, including enhanced yellow fluorescent protein, tobacco etch virus protease (TEV), lysozyme, and bacterial cytochrome P450 CYP152A1, and the photochemical properties of the resulting conjugates are analyzed by EPR spectroscopy and hydroxyl radical‐specific fluorimetric assay. While irradiation of bare CdS colloids leads to photogeneration of hydroxyl and superoxide radicals, it is surprisingly observed that coating of the CdS particles with proteins effectively suppresses the production of these radical species and instead leads to increased formation of a long‐lived reactive oxygen species, most likely H2O2. A mechanism for the observed results is suggested. The empirical results are capitalized on for the assembly of a CdS–TEV nanohybrid, which shows significantly higher performance as a photocatalytic mediator for fatty acid hydroxylation by CYP152A1 than bare CdS nanoparticles.  相似文献   

16.
Collagen–nanoparticle interactions are vital for many biomedical applications including drug delivery and tissue engineering applications. Iron oxide nanoparticles synthesized using starch template according to our earlier reported procedures were functionalized by treating them with Gum Arabic (GA), a biocompatible polysaccharide, so as to enhance the interaction between nanoparticle surfaces and collagen. Viscosity, circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR) techniques have been used to study the collagen–nanoparticle interactions. The relative viscosity for collagen–nanoparticle conjugate was found to increase with increase in concentration of the nanoparticle within the concentration range investigated, which is due to the aggregation of protein onto the surface of nanoparticle. The CD spectra for the collagen–nanoparticle at different concentration ratios do not have much variation in the Rpn values (ratio of positive peak intensity over negative peak intensity) after functionalization with GA. The variation of molar ellipticity values for collagen–nanoparticle is due to the glycoprotein present in GA. The collagen triple helical structure is maintained after interaction with nanoparticles. The FTIR spectra of native collagen, Coll–Fs (nanoparticle without functionalization) and Coll–FsG (nanoparticle functionalized with GA) show clearly the amide I, II, III bands, with respect to collagen. The ability of polysaccharide stabilized/functionalized nanoparticles to maintain the collagen properties would help in its biomedical applications.  相似文献   

17.
Self‐assembly of solvated nanoparticles (NPs) is governed by numerous competing interactions. However, relatively little is known about the time‐dependent mechanisms through which these interactions enable and guide the nanoparticle self‐assembly process. Here, using in situ transmission electron microscopy imaging combined with atomistic modeling, it is shown that the forces governing the self‐assembly of hydrophobic nanoparticles change with the nanoparticle shapes. By comparing how gold nanospheres, nanocubes, nanorods, and nanobipyramids assemble, it is shown that the strength of the hydrophobic interactions depends on the overlap of the hydrophobic regions of the interacting nanoparticle surfaces determined by the nanoparticle shapes. Specifically, this study reveals that, in contrast to spherical nanoparticles, where van der Waals forces play an important role, hydrophobic interactions can be more relevant for nanocubes with flat side faces, where an oriented attachment between the nanocubes is promoted by these interactions. The attachment of nanocubes is observed to proceed in two distinct pathways: nanocubes either: (i) prealign their faces before the attachment, or (ii) first connect through a misaligned (edge‐to‐edge) attachment, followed by a postattachment alignment of their faces. These results have important implications for understanding the interaction dynamics of NPs and provide the framework for the design of future self‐assembled nanomaterials.  相似文献   

18.
Self-assembled multilayer films of nitrogen-doped exfoliated titania nanosheets and Au nanoparticles (NP) were fabricated via layer-by-layer assembly method followed by solar irradiation treatment. Au NP were found to form by in-situ reduction and thus disperse homogeneously between nitrogen-doped titania nanosheet galleries and the composite films of disordered structure, as confirmed by transmission electron microscope and X-ray diffractometer. Ultraviolet-visible absorption spectra in the multilayer buildup process indicated that plasmon resonance of the multilayer films was enhanced and red-shifted due to the changes of surrounding medium. It is found that nearly equal amounts of nanosheets were assembled and golds were reduced in each deposition cycle. X-ray photoelectron spectroscopy observation revealed that the interaction between the two components affects the distribution of electrons of Au, which causes the negative shift of the binding energy of Au NP. Compared with pure nitrogen-doped (N-doped) titania nanosheets, the higher hydroxyl density on the surface of such multilayer films was confirmed to be beneficial to efficiently separating the photogenerated electrons and holes, and as a result enhancing their photocatalytic activities.  相似文献   

19.
20.
The paradigm of using nanoparticle‐based formulations for drug delivery relies on their enhanced passive accumulation in the tumor interstitium. Nanoparticles with active targeting capabilities attempt to further enhance specific delivery of drugs to the tumors via interaction with overexpressed cellular receptors. Consequently, it is widely accepted that drug delivery using actively targeted nanoparticles maximizes the therapeutic benefit and minimizes the off‐target effects. However, the process of nanoparticle mediated active targeting initially relies on their passive accumulation in tumors. In this article, it is demonstrated that these two tumor‐targeted drug delivery mechanisms are interrelated and dosage dependent. It is reported that at lower doses, actively targeted nanoparticles have distinctly higher efficacy in tumor inhibition than their passively targeted counterparts. However, the enhanced permeability and retention effect of the tumor tissue becomes the dominant factor influencing the efficacy of both passively and actively targeted nanoparticles when they are administered at higher doses. Importantly, it is demonstrated that dosage is a pivotal parameter that needs to be taken into account in the assessment of nanoparticle mediated targeted drug delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号