首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
With an eye toward using surface morphology to enhance heterogeneous catalysis, Pt nanoparticles are grown by atomic layer deposition (ALD) on the surfaces of SrTiO3 nanocubes. The size, dispersion, and chemical state of the Pt nanoparticles are controlled by the number of ALD growth cycles. The SrTiO3 nanocubes average 60 nm on a side with {001} faces. The Pt loading increases linearly with Pt ALD cycles to a value of 1.1 × 10?6 g cm?2 after five cycles. Scanning electron microscopy images reveal discrete, well‐dispersed Pt nanoparticles. Small‐ and wide‐angle X‐ray scattering show that the Pt nanoparticle spacing and size increase as the number of ALD cycles increases. X‐ray absorption spectroscopy shows a progression from platinum(II) oxide to metallic platinum and a decrease in Pt? O bonding with an increase in Pt? Pt bonding as the number of ALD cycles increases.  相似文献   

2.
The large‐scale application of supercapacitors (SCs) for portable electronics is restricted by low energy density and cycling stability. To alleviate the limitations, a unique interface engineering strategy is suggested through atomic layer deposition (ALD) and nitrogen plasma. First, commercial carbon cloth (CC) is treated with nitrogen plasma and later inorganic NiCo2O4 (NCO)/NiO core–shell nanowire arrays are deposited on nitrogen plasma–treated CC (NCC) to fabricate the ultrahigh stable SC. An ultrathin layer of NiO deposited on the NCO nanowire arrays via conformal ALD plays a vital role in stabilizing the NCO nanowires for thousands of electrochemical cycles. The optimized NCC/NCO/NiO core–shell electrode exhibits a high specific capacitance of 2439 F g?1 with a remarkable cycling stability (94.2% over 20 000 cycles). Benefiting from these integrated merits, the foldable solid‐state SCs are fabricated with excellent NCC/NCO/NiO core–shell nanowire array electrodes. The fabricated SC device delivers a high energy density of 72.32 Wh kg?1 at a specific capacitance of 578 F g?1, with ultrasmall capacitance decline rate of 0.0003% per cycle over 10 000 charge–discharge cycles. Overall, this strategy offers a new avenue for developing a new‐generation high‐energy, ultrahigh stable supercapacitor for real‐life applications.  相似文献   

3.
Rational designing of the composition and structure of electrode material is of great significance for achieving highly efficient energy storage and conversion in electrochemical energy devices. Herein, MoS2/NiS yolk–shell microspheres are successfully synthesized via a facile ionic liquid‐assisted one‐step hydrothermal method. With the favorable interface effect and hollow structure, the electrodes assembled with MoS2/NiS hybrid microspheres present remarkably enhanced electrochemical performance for both overall water splitting and asymmetric supercapacitors. In particular, to deliver a current density of 10 mA cm?2, the MoS2/NiS‐based electrolysis cell for overall water splitting only needs an output voltage of 1.64 V in the alkaline medium, lower than that of Pt/C–IrO2‐based electrolysis cells (1.70 V). As an electrode for supercapacitors, the MoS2/NiS hybrid microspheres exhibit a specific capacitance of 1493 F g?1 at current density of 0.2 A g?1, and remain 1165 F g?1 even at a large current density of 2 A g?1, implying outstanding charge storage capacity and excellent rate performance. The MoS2/NiS‐ and active carbon‐based asymmetric supercapacitor manifests a maximum energy density of 31 Wh kg?1 at a power density of 155.7 W kg?1, and remarkable cycling stability with a capacitance retention of approximately 100% after 10 000 cycles.  相似文献   

4.
Artificial photosynthesis of hydrocarbon fuels by utilizing solar energy and CO2 is considered as a potential route for solving ever‐increasing energy crisis and greenhouse effect. Herein, hierarchical porous O‐doped graphitic carbon nitride (g‐C3N4) nanotubes (OCN‐Tube) are prepared via successive thermal oxidation exfoliation and curling‐condensation of bulk g‐C3N4. The as‐prepared OCN‐Tube exhibits hierarchically porous structures, which consist of interconnected multiwalled nanotubes with uniform diameters of 20–30 nm. The hierarchical OCN‐Tube shows excellent photocatalytic CO2 reduction performance under visible light, with methanol evolution rate of 0.88 µmol g?1 h?1, which is five times higher than bulk g‐C3N4 (0.17 µmol g?1 h?1). The enhanced photocatalytic activity of OCN‐Tube is ascribed to the hierarchical nanotube structure and O‐doping effect. The hierarchical nanotube structure endows OCN‐Tube with higher specific surface area, greater light utilization efficiency, and improved molecular diffusion kinetics, due to the more exposed active edges and multiple light reflection/scattering channels. The O‐doping optimizes the band structure of g‐C3N4, resulting in narrower bandgap, greater CO2 affinity, and uptake capacity as well as higher separation efficiency of photogenerated charge carriers. This work provides a novel strategy to design hierarchical g‐C3N4 nanostructures, which can be used as promising photocatalyst for solar energy conversion.  相似文献   

5.
Recently, ambient electrochemical N2 fixation has gained great attention. However, the commercial Pt‐based electrocatalyst hardly shows its potential in this field. Herein, it is found that the isolated Pt sites anchored on WO3 nanoplates exhibit the optimum electrochemical NH3 yield rate (342.4 µg h?1 mg?1Pt) and Faradaic efficiency (31.1%) in 0.1 m K2SO4 at ?0.2 V versus RHE, which are about 11 and 15 times higher than their nanoparticle counterparts, respectively. The mechanistic analysis indicates that N2 conversion to NH3 follows an alternating hydrogenation pathway, and positively charged isolated Pt sites with special Pt?3O structure can favorably chemisorb and activate the N2. Furthermore, the hydrogen evolution reaction can be greatly suppressed on isolated Pt sites decorated WO3 nanoplates, which guarantees the efficient going‐on of nitrogen reduction reaction.  相似文献   

6.
A novel process to fabricate a carbon‐microelectromechanical‐system‐based alternating stacked MoS2@rGO–carbon‐nanotube (CNT) micro‐supercapacitor (MSC) is reported. The MSC is fabricated by successively repeated spin‐coating of MoS2@rGO/photoresist and CNT/photoresist composites twice, followed by photoetching, developing, and pyrolysis. MoS2@rGO and CNTs are embedded in the carbon microelectrodes, which cooperatively enhance the performance of the MSC. The fabricated MSC exhibits a high areal capacitance of 13.7 mF cm?2 and an energy density of 1.9 µWh cm?2 (5.6 mWh cm?3), which exceed many reported carbon‐ and MoS2‐based MSCs. The MSC also retains 68% of capacitance at a current density of 2 mA cm?2 (5.9 A cm?3) and an outstanding cycling performance (96.6% after 10 000 cycles, at a scan rate of 1 V s?1). Compared with other MSCs, the MSC in this study is fabricated by a low‐cost and facile process, and it achieves an excellent and stable electrochemical performance. This approach could be highly promising for applications in integration of micro/nanostructures into microdevices/systems.  相似文献   

7.
A new and generic strategy to construct interwoven carbon nanotube (CNT) branches on various metal oxide nanostructure arrays (exemplified by V2O3 nanoflakes, Co3O4 nanowires, Co3O4–CoTiO3 composite nanotubes, and ZnO microrods), in order to enhance their electrochemical performance, is demonstrated for the first time. In the second part, the V2O3/CNTs core/branch composite arrays as the host for Na+ storage are investigated in detail. This V2O3/CNTs hybrid electrode achieves a reversible charge storage capacity of 612 mAh g?1 at 0.1 A g?1 and outstanding high‐rate cycling stability (a capacity retention of 100% after 6000 cycles at 2 A g?1, and 70% after 10 000 cycles at 10 A g?1). Kinetics analysis reveals that the Na+ storage is a pseudocapacitive dominating process and the CNTs improve the levels of pseudocapacitive energy by providing a conductive network.  相似文献   

8.
A coaxial electrode structure composed of manganese oxide‐decorated TiC/C core/shell nanofiber arrays is produced hydrothermally in a KMnO4 solution. The pristine TiC/C core/shell structure prepared on the Ti alloy substrate provides the self‐sacrificing carbon shell and highly conductive TiC core, thus greatly simplifying the fabrication process without requiring an additional reduction source and conductive additive. The as‐prepared electrode exhibits a high specific capacitance of 645 F g?1 at a discharging current density of 1 A g?1 attributable to the highly conductive TiC/C and amorphous MnO2 shell with fast ion diffusion. In the charging/discharging cycling test, the as‐prepared electrode shows high stability and 99% capacity retention after 5000 cycles. Although the thermal treatment conducted on the as‐prepared electrode decreases the initial capacitance, the electrode undergoes capacitance recovery through structural transformation from the crystalline cluster to layered birnessite type MnO2 nanosheets as a result of dissolution and further electrodeposition in the cycling. 96.5% of the initial capacitance is retained after 1000 cycles at high charging/discharging current density of 25 A g?1. This study demonstrates a novel scaffold to construct MnO2 based SCs with high specific capacitance as well as excellent mechanical and cycling stability boding well for future design of high‐performance MnO2‐based SCs.  相似文献   

9.
Selectively exposing active surfaces and judiciously tuning the near‐surface composition of electrode materials represent two prominent means of promoting electrocatalytic performance. Here, a new class of Pt3Fe zigzag‐like nanowires (Pt‐skin Pt3Fe z‐NWs) with stable high‐index facets (HIFs) and nanosegregated Pt‐skin structure is reported, which are capable of substantially boosting electrocatalysis in fuel cells. These unique structural features endow the Pt‐skin Pt3Fe z‐NWs with a mass activity of 2.11 A mg?1 and a specifc activity of 4.34 mA cm?2 for the oxygen reduction reaction (ORR) at 0.9 V versus reversible hydrogen electrode, which are the highest in all reported PtFe‐based ORR catalysts. Density function theory calculations reveal a combination of exposed HIFs and formation of Pt‐skin structure, leading to an optimal oxygen adsorption energy due to the ligand and strain effects, which is responsible for the much enhanced ORR activities. In contrast to previously reported HIFs‐based catalysts, the Pt‐skin Pt3Fe z‐NWs maintain ultrahigh durability with little activity decay and negligible structure transformation after 50 000 potential cycles. Overcoming a key technical barrier in electrocatalysis, this work successfully extends the nanosegregated Pt‐skin structure to nanocatalysts with HIFs, heralding the exciting prospects of high‐effcient Pt‐based catalysts in fuel cells.  相似文献   

10.
Silicon anode with extremely high theoretical specific capacity (≈4200 mAh g?1), experiences huge volume changes during Li‐ion insertion and extraction, causing mechanical fracture of Si particles and the growth of a solid–electrolyte interface (SEI), which results in a rapid capacity fading of Si electrodes. Herein, a mechanically reinforced localized structure is designed for carbon‐coated Si nanoparticles (C@Si) via elongated TiO2 nanotubes networks toward stabilizing Si electrode via alleviating mechanical strain and stabilizing the SEI layer. Benefited from the rational localized structure design, the carbon‐coated Si nanoparticles/TiO2 nanotubes composited electrode (C@Si/TiNT) exhibits an ideal electrode thickness swelling, which is lower than 1% after the first cycle and increases to about 6.6% even after 1600 cycles. While for traditional C@Si/carbon nanotube composited electrode, the initial swelling ratio is about 16.7% and reaches ≈190% after 1600 cycles. As a result, the C@Si/TiNT electrode exhibits an outstanding capacity of 1510 mAh g?1 at 0.1 A g?1 with high rate capability and long‐time cycling performance with 95% capacity retention after 1600 cycles. The rational design on mechanically reinforced localized structure for silicon electrode will provide a versatile platform to solve the current bottlenecks for other alloyed‐type electrode materials with large volume expansion toward practical applications.  相似文献   

11.
Metal phosphides are a new class of potential high‐capacity anodes for lithium ion batteries, but their short cycle life is the critical problem to hinder its practical application. A unique ball‐cactus‐like microsphere of carbon coated NiP2/Ni3Sn4 with deep‐rooted carbon nanotubes (Ni‐Sn‐P@C‐CNT) is demonstrated in this work to solve this problem. Bimetal‐organic‐frameworks (BMOFs, Ni‐Sn‐BTC, BTC refers to 1,3,5‐benzenetricarboxylic acid) are formed by a two‐step uniform microwave‐assisted irradiation approach and used as the precursor to grow Ni‐Sn@C‐CNT, Ni‐Sn‐P@C‐CNT, yolk–shell Ni‐Sn@C, and Ni‐Sn‐P@C. The uniform carbon overlayer is formed by the decomposition of organic ligands from MOFs and small CNTs are deeply rooted in Ni‐Sn‐P@C microsphere due to the in situ catalysis effect of Ni‐Sn. Among these potential anode materials, the Ni‐Sn‐P@C‐CNT is found to be a promising anode with best electrochemical properties. It exhibits a large reversible capacity of 704 mA h g?1 after 200 cycles at 100 mA g?1 and excellent high‐rate cycling performance (a stable capacity of 504 mA h g?1 retained after 800 cycles at 1 A g?1). These good electrochemical properties are mainly ascribed to the unique 3D mesoporous structure design along with dual active components showing synergistic electrochemical activity within different voltage windows.  相似文献   

12.
Flexible supercapacitors have shown enormous potential for portable electronic devices. Herein, hierarchical 3D all‐carbon electrode materials are prepared by assembling N‐doped graphene quantum dots (N‐GQDs) on carbonized MOF materials (cZIF‐8) interweaved with carbon nanotubes (CNTs) for flexible all‐solid‐state supercapacitors. In this ternary electrode, cZIF‐8 provides a large accessible surface area, CNTs act as the electrical conductive network, and N‐GQDs serve as highly pseudocapactive materials. Due to the synergistic effect and hierarchical assembly of these components, N‐GQD@cZIF‐8/CNT electrodes exhibit a high specific capacitance of 540 F g?1 at 0.5 A g?1 in a 1 m H2SO4 electrolyte and excellent cycle stability with 90.9% capacity retention over 8000 cycles. The assembled supercapacitor possesses an energy density of 18.75 Wh kg?1 with a power density of 108.7 W kg?1. Meanwhile, three supercapacitors connected in series can power light‐emitting diodes for 20 min. All‐solid‐state N‐GQD@cZIF‐8/CNT flexible supercapacitor exhibits an energy density of 14 Wh kg?1 with a power density of 89.3 W kg?1, while the capacitance retention after 5000 cycles reaches 82%. This work provides an effective way to construct novel electrode materials with high energy storage density as well as good cycling performance and power density for high‐performance energy storage devices via the rational design.  相似文献   

13.
To date, it has been a great challenge to design high‐performance flexible energy storage devices for sufficient loading of redox species in the electrode assemblies, with well‐maintained mechanical robustness and enhanced electron/ionic transport during charge/discharge cycles. An electrochemical activation strategy is demonstrated for the facile regeneration of carbon nanotube (CNT) film prepared via floating catalyst chemical vapor deposition strategy into a flexible, robust, and highly conductive hydrogel‐like film, which is promising as electrode matrix for efficient loading of redox species and the fabrication of high‐performance flexible pseudosupercapacitors. The strong and conductive CNT films can be effectively expanded and activated by electrochemical anodic oxygen evolution reaction, presenting greatly enhanced internal space and surface wettability with well‐maintained strength, flexibility, and conductivity. The as‐formed hydrogel‐like film is quite favorable for electrochemical deposition of manganese dioxide (MnO2) with loading mass up to 93 wt% and electrode capacitance kept around 300 F g?1 (areal capacitance of 1.2 F cm?2). This hybrid film was further used to assemble a flexible symmetric pseudosupercapacitor without using any other current collectors and conductive additives. The assembled flexible supercapacitors exhibited good rate performance, with the areal capacitance of more than 300 mF cm?2, much superior to other reported MnO2 based flexible thin‐film supercapacitors.  相似文献   

14.
Transition metal sulfides gain much attention as electrode materials for supercapacitors due to their rich redox chemistry and high electrical conductivity. Designing hierarchical nanostructures is an efficient approach to fully utilize merits of each component. In this work, amorphous MoS2 is firstly demonstrated to show specific capacitance 1.6 times as that of the crystalline counterpart. Then, crystalline core@amorphous shell (Ni3S4@MoS2) is prepared by a facile one‐pot process. The diameter of the core and the thickness of the shell can be independently tuned. Taking advantages of flexible protection of amorphous shell and high capacitance of the conductive core, Ni3S4@amorphous MoS2 nanospheres are tested as supercapacitor electrodes, which exhibit high specific capacitance of 1440.9 F g?1 at 2 A g?1 and a good capacitance retention of 90.7% after 3000 cycles at 10 A g?1. This design of crystalline core@amorphous shell architecture may open up new strategies for synthesizing promising electrode materials for supercapacitors.  相似文献   

15.
The synthesis of Pt nanotubes catalysts remains a substantial challenge, especially for those with both sub‐nanometer wall thickness and micrometer‐scale length characteristics. Combining techniques of insulin fibril template with Pd nanowire template, numerous Pt nanotubes with diameter of 5.5 nm, tube‐length of several micrometers, and ultrathin wall thickness of 1 nm are assembled. These tubular catalysts with both open ends deliver electrochemical active surface area (ECSA) of 91.43 m2 gpt?1 which results from multiple Pt atoms exposed on the inner and outer surfaces that doubled Pt atoms can participate in catalytic reactions, further with enhanced electrocatalytic performance for oxygen reduction reaction (ORR). The ultrafine Pt nanotubes represent a class of hollow nanostructure with increased Pt‐utilization and large ECSA, which is regarded as a type of cost‐effective catalysts for ORR.  相似文献   

16.
Transition metal hydro/oxides (TMH/Os) are treated as the most promising alternative supercapacitor electrodes thanks to their high theoretical capacitance due to the various oxidation states and abundant cheap resources of TMH/Os. However, the poor conductivity and logy reaction kinetics of TMH/Os severely restrict their practical application. Herein, hierarchical core–shell P‐Ni(OH)2@Co(OH)2 micro/nanostructures are in situ grown on conductive Ni foam (P‐Ni(OH)2@Co(OH)2/NF) through a facile stepwise hydrothermal process. The unique heterostructure composed of P‐Ni(OH)2 rods and Co(OH)2 nanoflakes boost the charge transportation and provide abundant active sites when used as the intergrated cathode for supercapacitors. It delivers an ultrahigh areal specific capacitance of 4.4 C cm?2 at 1 mA cm?2 and the capacitance can maintain 91% after 10 000 cycles, showing an ultralong cycle life. Additionally, a hybrid supercapacitor composed with P‐Ni(OH)2@Co(OH)2/NF cathode and Fe2O3/CC anode shows a wider voltage window of 1.6 V, a remarkable energy density of 0.21 mWh cm?2 at the power density of 0.8 mW cm?2, and outstanding cycling stability with about 81% capacitance retention after 5000 cycles. This innovative study not only supplies a newfashioned electronic apparatus with high‐energy density and cycling stability but offers a fresh reference and enlightenment for synthesizing advanced integrated electrodes for high‐performance hybrid supercapacitors.  相似文献   

17.
A MoS2@C nanotube composite is prepared through a facile hydrothermal method, in which the MoS2 nanotube and amorphous carbon are generated synchronically. When evaluated as an anode material for lithium ion batteries (LIB), the MoS2@C nanotube manifests an enhanced capacity of 1327 mA h g?1 at 0.1 C with high initial Coulombic efficiency (ICE) of 92% and with capacity retention of 1058.4 mA h g?1 (90% initial capacity retention) after 300 cycles at a rate of 0.5 C. A superior rate capacity of 850 mA h g?1 at 5 C is also obtained. As for sodium ion batteries, a specific capacity of 480 mA h g?1 at 0.5 C is achieved after 200 cycles. The synchronically formed carbon and stable hollow structure lead to the long cycle stability, high ICE, and superior rate capability. The good electrochemical behavior of MoS2@C nanotube composite suggests its potential application in high‐energy LIB.  相似文献   

18.
The bottom‐up integration of a 1D–2D hybrid semiconductor nanostructure into a vertical field‐effect transistor (VFET) for use in flexible inorganic electronics is reported. Zinc oxide (ZnO) nanotubes on graphene film is used as an example. The VFET is fabricated by growing position‐ and dimension‐controlled single crystal ZnO nanotubes vertically on a large graphene film. The graphene film, which acts as the substrate, provides a bottom electrical contact to the nanotubes. Due to the high quality of the single crystal ZnO nanotubes and the unique 1D device structure, the fabricated VFET exhibits excellent electrical characteristics. For example, it has a small subthreshold swing of 110 mV dec?1, a high Imax/Imin ratio of 106, and a transconductance of 170 nS µm?1. The electrical characteristics of the nanotube VFETs are validated using 3D transport simulations. Furthermore, the nanotube VFETs fabricated on graphene films can be easily transferred onto flexible plastic substrates. The resulting components are reliable, exhibit high performance, and do not degrade significantly during testing.  相似文献   

19.
Nowadays, the state‐of‐the‐art electrocatalysts for hydrogen evolution reaction (HER) are platinum group metals. Nonetheless, Pt‐based catalysts show decreased HER activity in alkaline media compared with that in acidic media due to the sluggish dissociation process of H2O on the surface of Pt. With a cost 1/25 that of Pt, Ru demonstrates a favorable dissociation kinetics of absorbed H2O. Herein, crystalline Ru0.33Se nanoparticles are decorated onto TiO2 nanotube arrays (TNAs) to fabricate Ru0.33Se @ TNA hybrid for HER. Owing to the large‐specific surface area, Ru0.33Se nanoparticles are freely distributed and the particle aggregation is eliminated, providing more active sites. The contracted electron transport pathway rendered by TiO2 nanotubes and the synergistic effect at the interface significantly improve the charge transfer efficiency in the hybrid catalyst. Compared with Ru0.33Se nanoparticles deposited directly on the Ti foil (Ru0.33Se/Ti) or carbon cloth (Ru0.33Se/CC), Ru0.33Se @ TNA shows an enhanced catalytic activity with an overpotential of 57 mV to afford a current density of 10 mA cm?2, a Tafel slope of 50.0 mV dec?1. Furthermore, the hybrid catalyst also exhibits an outstanding catalytic stability. The strategy here opens up a new synthetic avenue to the design of highly efficient hybrid electrocatalysts for hydrogen production.  相似文献   

20.
This study reports the electrical transport and the field emission properties of individual multi‐walled tungsten disulphide (WS2) nanotubes (NTs) under electron beam irradiation and mechanical stress. Electron beam irradiation is used to reduce the nanotube‐electrode contact resistance by one‐order of magnitude. The field emission capability of single WS2 NTs is investigated, and a field emission current density as high as 600 kA cm?2 is attained with a turn‐on field of ≈ 100 V μm?1 and field‐enhancement factor ≈ 50. Moreover, the electrical behavior of individual WS2 NTs is studied under the application of longitudinal tensile stress. An exponential increase of the nanotube resistivity with tensile strain is demonstrated up to a recorded elongation of 12%, thereby making WS2 NTs suitable for piezoresistive strain sensor applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号