首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite advances in controlled drug delivery, reliable methods for activatable, high‐resolution control of drug release are needed. The hypothesis that the photothermal effect mediated by a near‐infrared (NIR) laser and hollow gold nanospheres (HAuNSs) could modulate the release of anticancer agents is tested with biodegradable and biocompatible microspheres (1–15 µm) containing the antitumor drug paclitaxel (PTX) and HAuNSs (≈35 nm in diameter), which display surface plasmon absorbance in the NIR region. HAuNS‐containing microspheres exhibit a NIR‐induced thermal effect similar to that of plain HAuNSs. Rapid, repetitive PTX release from the PTX/HAuNS‐containing microspheres is observed upon irradiation with NIR light (808 nm), whereas PTX release is insignificant when the NIR light is switched off. The release of PTX from the microspheres is readily controlled by the output power of the NIR laser, duration of irradiation, treatment frequency, and concentration of HAuNSs embedded inside the microspheres. In vitro, cancer cells incubated with PTX/HAuNS‐loaded microspheres and irradiated with NIR light display significantly greater cytotoxic effects than cells incubated with the microspheres alone or cells irradiated with NIR light alone, owing to NIR‐light‐triggered drug release. Treatment of human U87 gliomas and MDA‐MB‐231 mammary tumor xenografts in nude mice with intratumoral injections of PTX/HAuNS‐loaded microspheres followed by NIR irradiation results in significant tumor‐growth delay compared to tumors treated with HAuNS‐loaded microspheres (no PTX) and NIR irradiation or with PTX/HAuNS‐loaded microspheres alone. The data support the feasibility of a therapeutic approach in which NIR light is used for simultaneous modulation of drug release and induction of photothermal cell killing.  相似文献   

2.
Cell adhesion of nanosystems is significant for efficient cellular uptake and drug delivery in cancer therapy. Herein, a near‐infrared (NIR) light‐driven biomimetic nanomotor is reported to achieve the improved cell adhesion and cellular uptake for synergistic photothermal and chemotherapy of breast cancer. The nanomotor is composed of carbon@silica (C@SiO2) with semi‐yolk@spiky‐shell structure, loaded with the anticancer drug doxorubicin (DOX) and camouflaged with MCF‐7 breast cancer cell membrane (i.e., mC@SiO2@DOX). Such biomimetic mC@SiO2@DOX nanomotors display efficient self‐thermophoretic propulsion due to a thermal gradient generated by asymmetrically spatial distribution. Moreover, the MCF‐7 cancer cell membrane coating can remarkably reduce the bioadhesion of nanomotors in biological medium and exhibit highly specific self‐recognition of the source cell line. The combination of effective propulsion and homologous targeting dramatically improves cell adhesion and the resultant cellular uptake efficiency in vitro from 26.2% to 67.5%. Therefore, the biomimetic mC@SiO2@DOX displays excellent synergistic photothermal and chemotherapy with over 91% MCF‐7 cell growth inhibition rate. Such smart design of the fuel‐free, NIR light‐powered biomimetic nanomotor may pave the way for the application of self‐propelled nanomotors in biomedicine.  相似文献   

3.
Liu L  Lee W  Huang Z  Scholz R  Gösele U 《Nanotechnology》2008,19(33):335604
The fabrication of a composite membrane of nanoporous gold nanowires and anodic aluminum oxide (AAO) is demonstrated by the electrodeposition of Au-Ag alloy nanowires into an AAO membrane, followed by selective etching of silver from the alloy nanowires. This composite membrane is advantageous for flow-through type catalytic reactions. The morphology evolution of the nanoporous gold nanowires as a function of the diameter of the Au-Ag nanowire 'precursors' is also investigated.  相似文献   

4.
Motion control is essential for various applications of man‐made nanomachines. The ability to control and regulate the movement of catalytic nanowire motors is illustrated by applying short heat pulses that allow the motors to be accelerated or slowed down. The accelerated motion observed during the heat pulses is attributed primarily to the thermal activation of the redox reactions of the H2O2 fuel at the Pt and Au segments and to the decreased viscosity of the aqueous medium at elevated temperatures. The thermally modulated motion during repetitive temperature on/off cycles is highly reversible and fast, with speeds of 14 and 45 µm s?1 at 25 and 65 °C, respectively. A wide range of speeds can be generated by tailoring the temperature to yield a linear speed–temperature dependence. Through the use of nickel‐containing nanomotors, the ability to combine the thermally regulated motion of catalytic nanomotors with magnetic guidance is also demonstrated. Such on‐demand control of the movement of nanowire motors holds great promise for complex operations of future manmade nanomachines and for creating more sophisticated nanomotors.  相似文献   

5.
Inspired by the swimming of natural microorganisms, synthetic micro‐/nanomachines, which convert energy into movement, are able to mimic the function of these amazing natural systems and help humanity by completing environmental and biological tasks. While offering autonomous propulsion, conventional micro‐/nanomachines usually rely on the decomposition of external chemical fuels (e.g., H2O2), which greatly hinders their applications in biologically relevant media. Recent developments have resulted in various micro‐/nanomotors that can be powered by biocompatible fuels. Fuel‐free synthetic micro‐/nanomotors, which can move without external chemical fuels, represent another attractive solution for practical applications owing to their biocompatibility and sustainability. Here, recent developments on fuel‐free micro‐/nanomotors (powered by various external stimuli such as light, magnetic, electric, or ultrasonic fields) are summarized, ranging from fabrication to propulsion mechanisms. The applications of these fuel‐free micro‐/nanomotors are also discussed, including nanopatterning, targeted drug/gene delivery, cell manipulation, and precision nanosurgery. With continuous innovation, future autonomous, intelligent and multifunctional fuel‐free micro‐/nanomachines are expected to have a profound impact upon diverse biomedical applications, providing unlimited opportunities beyond one's imagination.  相似文献   

6.
Micro‐/nanomotors are widely used in micro‐/nanoprocessing, cargo transportation, and other microscale tasks because of their ability to move independently. Many biological hybrid motors based on bacteria have been developed. Magnetotactic bacteria (MTB) have been employed as motors in biological systems because of their good biocompatibility and magnetotactic motion in magnetic fields. However, the magnetotaxis of MTB is difficult to control due to the lack of effective methods. Herein, a strategy that enables control over the motion of MTB is presented. By depositing synthetic Fe3O4 magnetic nanoparticles on the surface of MTB, semiartificial magnetotactic bacteria (SAMTB) are produced. The overall magnetic properties of SAMTB, including saturation magnetization, residual magnetization, and blocking temperature, are regulated in a multivariate and multilevel fashion, thus regulating the magnetic sensitivity of SAMTB. This strategy provides a feasible method to manoeuvre MTB for applications in complex fluid environments, such as magnetic drug release systems and real‐time tracking systems. Furthermore, this concept and methodology provide a paradigm for controlling the mobility of micro‐/nanomotors based on natural small organisms.  相似文献   

7.
Nature's nanomachines, built of dynamically integrated biochemical components, powered by energy‐rich biochemical processes, and designed to perform a useful task, have evolved over millions of years. They provide the foundation of all living systems on our planet today. Yet synthetic nanomotors, driven by simple chemical reactions and which could function as building blocks for synthetic nanomachines that can perform useful tasks, have been discovered only in the last few years. Why did it take so long to power‐up a myriad of synthetic nanostructures from their well‐known static states to new and exciting dynamic ones of the kind that abound in nature? This article will delve into this disconnect between the world of biological and abiological nanomotors, then take a look at some recent developments involving chemically powered nanoscale motors and rotors, and finally try to imagine: what's next for nanolocomotion?  相似文献   

8.
Near‐infrared (NIR)‐to‐visible up‐conversion fluorescent nanoparticles have potential to be used for photodynamic therapy (PDT) in deep tissue because NIR light can penetrate thick tissue due to weak absorption in the optical window. Here a uniform layer of mesoporous silica is coated onto NaYF4 up‐converting nanocrystals, with a large surface area of ≈770 m2 g?1 and an average pore size of 2 nm. A photosensitizer, zinc phthalocyanine, is incorporated into the mesoporous silica. Upon excitation by a NIR laser, the nanocrystals convert NIR light to visible light, which further activates the photosensitizer to release reactive singlet oxygen to kill cancer cells. The photosensitizer encapsulated in mesoporous silica is protected from degradation in the harsh biological environment. It is demonstrated that the photosensitizers loaded into the porous silica shell of the nanoparticles are not released out of the silica while they continuously produce singlet oxygen upon excitation by a NIR laser. The nanoparticles are reusable as the photosensitizers encapsulated in the silica are removed by soaking in ethanol.  相似文献   

9.
Prompt membrane permeabilization is a requisite for liposomes designed for local stimuli‐induced intravascular release of therapeutic payloads. Incorporation of a small amount (i.e., 5 molar percent) of an unsaturated phospholipid, such as dioleoylphosphatidylcholine (DOPC), accelerates near infrared (NIR) light‐triggered doxorubicin release in porphyrin–phospholipid (PoP) liposomes by an order of magnitude. In physiological conditions in vitro, the loaded drug can be released in a minute under NIR irradiation, while liposomes maintain serum stability otherwise. This enables rapid laser‐induced drug release using remarkably low amounts of PoP (i.e., 0.3 molar percent). Light‐triggered drug release occurs concomitantly with DOPC and cholesterol oxidation, as detected by mass spectrometry. In the presence of an oxygen scavenger or an antioxidant, light‐triggered drug release is inhibited, suggesting that the mechanism is related to singlet oxygen mediated oxidization of unsaturated lipids. Despite the irreversible modification of lipid composition, DOPC‐containing PoP liposome permeabilization is transient. Human pancreatic xenograft growth in mice is significantly delayed with a single chemophototherapy treatment following intravenous administration of 6 mg kg?1 doxorubicin, loaded in liposomes containing small amounts of DOPC and PoP.  相似文献   

10.
The new capabilities and functionalities of synthetic micro/nanomotors open up considerable opportunities for diverse environmental and biomedical applications. Water‐powered micromachines are particularly attractive for realizing many of these applications. Magnesium‐based motors directly use water as fuel to generate hydrogen bubbles for their propulsion, eliminating the requirement of common toxic fuels. This Review highlights the development of new Mg‐based micromotors and discusses the chemistry that makes it extremely attractive for micromotor applications. Understanding these Mg properties and its transient nature is essential for controlling the propulsion efficiency, lifetime, and overall performance. The unique and attractive behavior of Mg offers significant advantages, including efficient water‐powered movement, remarkable biocompatibility, controlled degradation, convenient functionalization, and built‐in acid neutralization ability, and has paved the way for multifunctional micromachines for diverse real‐life applications, including operation in living animals. A wide range of such Mg motor‐based applications, including the detection and destruction of environmental threats, effective in‐vivo cargo delivery, and autonomous release, have been demonstrated. In conclusion, the current challenges, future opportunities, and performance improvements of the Mg‐based micromotors are discussed. With continuous innovation and attention to key challenges, it is expected that Mg‐based motors will have a profound impact on diverse biomedical and environmental applications.  相似文献   

11.
Novel antitumor system based on the targeting photothermal and pH‐responsive nanocarriers, gold nanoshells coated oleanolic acid liposomes mediating by chitosan (GNOLs), is designed and synthesized for the first time. The GNOLs present spherical and uniform size (172.03 nm) with zeta potential (20.7 ± 0.4 mV), which are more easily accumulated in tumor. Meanwhile, the GNOLs exhibit a slow and controlled release of oleanolic acid at pH 7.4, as well as a rapid release at pH 5.5, which is beneficial for tumor‐targeting drug release. Under near infrared (NIR) irradiation, hyperthermia can be generated by activated gold nanoshells to perform photothermal therapy effect, which triggers drug release from the carriers by activating the gel to liquid crystalline phase transition of the liposomes. Moreover, the NIR assisting drug release can be easily and selectively activated locally due to the spatially and real‐timely controllable property of light. The experimental results also verify that the GNOLs with NIR irradiation achieve more ideal antitumor effects than other oleanolic acid formulations in vitro and in vivo. Hence, the drug delivery system exhibits a great potential in chemo‐photothermal antitumor therapy.  相似文献   

12.
Light‐driven micro/nanomotors are promising candidates for long‐envisioned next‐generation nanorobotics for targeted drug delivery, noninvasive surgery, nanofabrication, and beyond. To achieve these fantastic applications, effective control of the micro/nanomotor is essential. Light has been proved as the most versatile method for microswimmer manipulation, while the light propagation direction, intensity, and wavelength have been explored as controlling signals for light‐responsive nanomotors. Here, the controlling method is expanded to the polarization state of the light, and a nanomotor with a significant dichroic ratio is demonstrated. Due to the anisotropic crystal structure, light polarized parallel to the Sb2Se3 nanowires is preferentially absorbed. The core–shell Sb2Se3/ZnO nanomotor exhibits strong dichroic swimming behavior: the swimming speed is ≈3 times faster when illuminated with parallel polarized light than perpendicular polarized light. Furthermore, by incorporating two cross‐aligned dichroic nanomotors, a polarotactic artificial microswimmer is achieved, which can be navigated by controlling the polarization direction of the incident light. Compared to the well‐studied light‐driven rotary motors based on optical tweezers, this dichroic microswimmer offers eight orders of magnitude light‐intensity reduction, which may enable large‐scale nanomanipulation as well as other heat‐sensitive applications.  相似文献   

13.
Inspired by the self‐migration of microorganisms in nature, artificial micro‐ and nanomotors can mimic this fantastic behavior by converting chemical fuel or external energy into mechanical motion. These self‐propelled micro‐ and nanomotors, designed either by top‐down or bottom‐up approaches, are able to achieve different applications, such as environmental remediation, sensing, cargo/sperm transportation, drug delivery, and even precision micro‐/nanosurgery. For these various applications, especially biomedical applications, regulating on‐demand the motion of micro‐ and nanomotors is quite essential. However, it remains a continuing challenge to increase the controllability over motors themselves. Here, we will discuss the recent advancements regarding the motion manipulation of micro‐ and nanomotors by different approaches.  相似文献   

14.
The combination of bottom‐up controllable self‐assembly technique with bioinspired design has opened new horizons in the development of self‐propelled synthetic micro/nanomotors. Over the past five years, a significant advances toward the construction of bioinspired self‐propelled micro/nanomotors has been witnessed based on the controlled self‐assembly technique. Such a strategy permits the realization of autonomously synthetic motors with engineering features, such as sizes, shapes, composition, propulsion mechanism, and function. The construction, propulsion mechanism, and movement control of synthetic micro/nanomotors in connection with controlled self‐assembly in recent research activities are summarized. These assembled nanomotors are expected to have a tremendous impact on current artificial nanomachines in future and hold potential promise for biomedical applications including drug targeted delivery, photothermal cancer therapy, biodetoxification, treatment of atherosclerosis, artificial insemination, crushing kidney stones, cleaning wounds, and removing blood clots and parasites.  相似文献   

15.
Multimodal imaging guided synergistic therapy promises more accurate diagnosis than any single imaging modality, and higher therapeutic efficiency than any single one or their simple “mechanical” combination. Herein, we report a dual‐stimuli responsive nanotheranostic based on a hierarchical nanoplatform, composed of mesoporous silica‐coated gold nanorods (GNR@SiO2), Indocyanine Green (ICG), and 5‐fluorouracil (5‐FU), for in vivo multimodal imaging guided synergistic therapy. The 5‐FU loaded ICG‐conjugated silica‐coated gold nanorods (GNR@SiO2‐5‐FU‐ICG) was able to response specifically to the two stimuli of pH change and near‐infrared (NIR) light irradiation. Both the NIR light irradiation and acidic environment accelerated the 5‐FU release. Meanwhile, the heat generation and singlet oxygen production can be induced by GNR@SiO2‐5‐FU‐ICG upon light irradiation. Most intriguingly, the nanoplatform also promises multimodal imaging such as two‐photon luminescence, fluorescence, photoacoustic, photothermal imaging, as well as trimodal synergistic therapy such as photothermal therapy (PTT), photodynamic therapy (PDT), and chemotherapy. The cancer theranostic capability of GNR@SiO2‐5‐FU‐ICG was evaluated both in vitro and in vivo. The trimodal synergistic therapy with the guidance of multimodal imaging exhibited remarkably enhanced treatment efficacy. This concept of a hierarchical nanoplatform integrates multiple diagnostic/therapeutic modalities into one platform, which can potentially be applied as personalized nanomedicine with drug delivery, diagnosis, and treatment.  相似文献   

16.
Despite the exciting advances in cancer chemotherapy over past decades, drug resistance in cancer treatment remains one of the primary reasons for therapeutic failure. IR‐780 loaded pH‐responsive polymeric prodrug micelles with near infrared (NIR) photothermal effect are developed to circumvent the drug resistance in cancer treatment. The polymeric prodrug micelles are stable in physiological environment, while exhibit fast doxorubicin (DOX) release in acidic condition and significant temperature elevation under NIR laser irradiation. Phosphorylcholine‐based biomimetic micellar shell and acid‐sensitive drug conjugation endow them with prolonged circulation time and reduced premature drug release during circulation to conduct tumor site‐specific chemotherapy. The polymeric prodrug micelles combined with NIR laser irradiation could significantly enhance intracellular DOX accumulation and synergistically induce the cell apoptosis in DOX‐resistant MCF‐7/ADR cells. Meanwhile, the tumor site‐specific chemotherapy combined with hyperthermia effect induces significant inhibition of MCF‐7/ADR tumor growth in tumor‐bearing mice. These results demonstrate that the well‐designed IR‐780 loaded polymeric prodrug micelles for hyperthermia‐assisted site‐specific chemotherapy present an effective approach to reverse drug resistance.  相似文献   

17.
Engineering of smart photoactivated nanomaterials for targeted drug delivery systems (DDS) has recently attracted considerable research interest as light enables precise and accurate controlled release of drug molecules in specific diseased cells and/or tissues in a highly spatial and temporal manner. In general, the development of appropriate light‐triggered DDS relies on processes of photolysis, photoisomerization, photo‐cross‐linking/un‐cross‐linking, and photoreduction, which are normally sensitive to ultraviolet (UV) or visible (Vis) light irradiation. Considering the issues of poor tissue penetration and high phototoxicity of these high‐energy photons of UV/Vis light, recently nanocarriers have been developed based on light‐response to low‐energy photon irradiation, in particular for the light wavelengths located in the near infrared (NIR) range. NIR light‐triggered drug release systems are normally achieved by using two‐photon absorption and photon upconversion processes. Herein, recent advances of light‐responsive nanoplatforms for controlled drug release are reviewed, covering the mechanism of light responsive small molecules and polymers, UV and Vis light responsive nanocarriers, and NIR light responsive nanocarriers. NIR‐light triggered drug delivery by two‐photon excitation and upconversion luminescence strategies is also included. In addition, the challenges and future perspectives for the development of light triggered DDS are highlighted.  相似文献   

18.
A smart release system responsive to near‐infrared (NIR) light is developed for intracellular drug delivery. The concept is demonstrated by coencapsulating doxorubicin (DOX) (an anticancer drug) and IR780 iodide (IR780) (an NIR‐absorbing dye) into nanoparticles made of a eutectic mixture of naturally occurring fatty acids. The eutectic mixture has a well‐defined melting point at 39 °C, and can be used as a biocompatible phase‐change material for NIR‐triggered drug release. The resultant nanoparticles exhibit prominent photothermal effect and quick drug release in response to NIR irradiation. Fluorescence microscopy analysis indicates that the DOX trapped in the nanoparticles can be efficiently released into the cytosol under NIR irradiation, resulting in enhanced anticancer activity. A new platform is thus offered for designing effective intracellular drug‐release systems, holding great promise for future cancer therapy.  相似文献   

19.
Fuel-free nanomotors are essential for future in-vivo biomedical transport and drug-delivery applications. Herein, the first example of directed delivery of drug-loaded magnetic polymeric particles using magnetically driven flexible nanoswimmers is described. It is demonstrated that flexible magnetic nickel-silver nanoswimmers (5-6 μm in length and 200 nm in diameter) are able to transport micrometer particles at high speeds of more than 10 μm s(-1) (more than 0.2 body lengths per revolution in dimensionless speed). The fundamental mechanism of the cargo-towing ability of these magnetic (fuel-free) nanowire motors is modelled, and the hydrodynamic features of these cargo-loaded motors discussed. The effect of the cargo size on swimming performance is evaluated experimentally and compared to a theoretical model, emphasizing the interplay between hydrodynamic drag forces and boundary actuation. The latter leads to an unusual increase of the propulsion speed at an intermediate particle size. Potential applications of these cargo-towing nanoswimmers are demonstrated by using the directed delivery of drug-loaded microparticles to HeLa cancer cells in biological media. Transport of the drug carriers through a microchannel from the pick-up zone to the release microwell is further illustrated. It is expected that magnetically driven nanoswimmers will provide a new approach for the rapid delivery of target-specific drug carriers to predetermined destinations.  相似文献   

20.
Light‐triggered drug delivery based on near‐infrared (NIR)‐mediated photothermal nanocarriers has received tremendous attention for the construction of cooperative therapeutic systems in nanomedicine. Herein, a new paradigm of light‐responsive drug carrier that doubles as a photothermal agent is reported based on the NIR light‐absorber, Rb x WO3 (rubidium tungsten bronze, Rb‐TB) nanorods. With doxorubicin (DOX) payload, the DOX‐loaded Rb‐TB composite (Rb‐TB‐DOX) simultaneously provides a burst‐like drug release and intense heating effect upon 808‐nm NIR light exposure. MTT assays show the photothermally enhanced antitumor activity of Rb‐TB‐DOX to the MCF‐7 cancer cells. Most remarkably, Rb‐TB‐DOX combined with NIR irradiation also shows dramatically enhanced chemotherapeutic effect to DOX‐resistant MCF‐7 cells compared with free DOX, demonstrating the enhanced efficacy of combinational chemo‐photothermal therapy for potentially overcoming drug resistance in cancer chemotherapy. Furthermore, in vivo study of combined chemo‐photothermal therapy is also conducted and realized on pancreatic (Pance‐1) tumor‐bearing nude mice. Apart from its promise for cancer therapy, the as‐prepared Rb‐TB can also be employed as a new dual‐modal contrast agent for photoacoustic tomography and (PAT) X‐ray computed tomography (CT) imaging because of its high NIR optical absorption capability and strong X‐ray attenuation ability, respectively. The results presented in the current study suggest promise of the multifunctional Rb x WO3 nanorods for applications in cancer theranostics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号