首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aggregation of gold nanoparticles (Au NPs) in cell media is a common phenomenon that can influence NP‐cell interactions. Here, we control Au NP aggregation in cell media and study the impact of Au NP aggregation on human dermal fibroblast (HDF) cells. By first adding Au NPs to fetal bovine serum (FBS) and then subsequently to a buffer, aggregation can be avoided. Aggregation of Au NPs also can be avoided by coating Au NPs with other biomolecules such as lipids. The aggregation state of the Au NPs influences cellular toxicity and Au NP uptake: non‐aggregated cationic Au NPs are four‐fold less toxic to HDF cells than aggregated cationic Au NPs, and the uptake of non‐aggregated anionic citrate Au NPs is three orders of magnitude less than that of aggregated citrate Au NPs. Upon uptake of Au NPs, cellular F‐actin fiber formation is disrupted and actin dots are predominant. When lipid‐coated Au NPs are doped with a fluorescent lipid (F‐lipid) and incubated with HDF cells, the fluorescence from the F‐lipid was found throughout the cell, showing that lipids can dissociate from the Au NP surface upon entering the cell.  相似文献   

2.
Speed, resolution and sensitivity of today's fluorescence bioimaging can be drastically improved by fluorescent nanoparticles (NPs) that are many‐fold brighter than organic dyes and fluorescent proteins. While the field is currently dominated by inorganic NPs, notably quantum dots (QDs), fluorescent polymer NPs encapsulating large quantities of dyes (dye‐loaded NPs) have emerged recently as an attractive alternative. These new nanomaterials, inspired from the fields of polymeric drug delivery vehicles and advanced fluorophores, can combine superior brightness with biodegradability and low toxicity. Here, we describe the strategies for synthesis of dye‐loaded polymer NPs by emulsion polymerization and assembly of pre‐formed polymers. Superior brightness requires strong dye loading without aggregation‐caused quenching (ACQ). Only recently several strategies of dye design were proposed to overcome ACQ in polymer NPs: aggregation induced emission (AIE), dye modification with bulky side groups and use of bulky hydrophobic counterions. The resulting NPs now surpass the brightness of QDs by ≈10‐fold for a comparable size, and have started reaching the level of the brightest conjugated polymer NPs. Other properties, notably photostability, color, blinking, as well as particle size and surface chemistry are also systematically analyzed. Finally, major and emerging applications of dye‐loaded NPs for in vitro and in vivo imaging are reviewed.  相似文献   

3.
The aim of this paper is to evaluate the cellular uptake of vincristine sulfate-loaded poly(lactic-co-glycolic acid)-polyethylene glycol (PLGA-PEG) nanoparticles with the folic acid modification (PLGA-PEG-folate NPs). PLGA-PEG-folate NPs were prepared using a water-oil-water emulsion solvent evaporation method. The particle size, surface morphology, drug encapsulation efficiency, and the drug release behavior were investigated. The NPs exhibited a biphasic drug release with a moderate initial burst followed by a sustained release profile. Internalization of the NPs labeled with coumarin- 6 by MCF-7 (Michigan Cancer Foundation-7) human breast cancer cells was quantitatively measured by microplate reader, and qualitatively analyzed by fluorescent microscopy and confocal laser scanning microscopy. The results showed PLGA-PEG-folate NPs achieved significantly higher cellular uptake in the folic acid receptor overexpressed MCF-7 cells, compared to PLGA-mPEG NPs without the folic acid modification. Due to the enhanced cellular uptake, PLGA-PEG-folate NPs displayed the highest cytotoxicity. Judged by IC(50) after 24 h culture, the therapeutic effects of the drug formulated in the NPs with surface modification could be 1.52 times, 3.91 times higher than that of PLGA-mPEG NPs and free vincristine sulfate, respectively.  相似文献   

4.
Herein is reported the one-step synthesis of an integrated nanocomposite with eccentrically loaded 5 nm gold nanoparticles (Au NPs) and conjugated polymer of poly[9,9-bis(6'-N,N,N-trimethylammonium)hexyl)fluorenyldivinylene-alt-4,7-(2,1,3,- benzothiadiazole) dibromide] (PFVBT). The nanocomposite is generated with surface-functionalized folic acid groups due to the matrix polymer of PLGA-PEG(2000) -folate used for encapsulation. The nanocomposite shows far-red fluorescence from PFVBT and scattering signal from Au NPs. Although Au NPs have been widely reported to quench the fluorescence of conjugated polymers, the PFVBT fluorescence is well maintained in the nanocomposite due to the eccentric location of Au NPs. The folic acid groups at the nanocomposite surface favor its cellular uptake by MCF-7 breast cancer cells, which have overexpressed folate receptors on the cell membranes. In conjugation with its low cytotoxicity, the folic-acid-functionalized nanocomposite has been successfully utilized for fluorescence and dark-field dual-modal targeted cellular imaging.  相似文献   

5.
This study dealt with the preparation and characterization of coumarin-6 loaded poly(caprolactone) grafted dextran (PGD) nanoparticles (NPs) and evaluation of cellular uptake by using human gastric cancer cell line (SNU-638), in vitro. The potential application of these PGD NPs for sustained drug delivery was evaluated by the quantification and localization of the cellular uptake of fluorescent PGD NPs. Coumarin-6 loaded PGD NPs were prepared by a modified oil/water emulsion technique and characterized by various physico-chemical methods such as, laser light scattering for particle size and size distribution, atomic force microscopy (AFM), zeta-potential and spectrofluorometry to identify the release of fluorescent molecules from the NPs. SNU-638 was used to measure the cellular uptake of fluorescent PGD NPs. Confocal laser scanning microscopic images clearly showed the internalization of NPs by the SNU-638 cells. Cell viability was assessed by treating the SNU-638 cells with PGD NPs for 48 h. The results reveal, that these biodegradable polymeric NPs holds promise in biomedical field as a carrier.  相似文献   

6.
The organization of metallic nanoparticles (NPs) into ordered arrays on nanopatterned surfaces is an enabling process to fabricate devices and study the properties of the particles. Tailoring the interaction between NPs and nanopatterns is a necessity to gain a high level of control in this process. Here, nanopatterned poly(ethylene glycol) (PEG) brushes are presented as a platform for the organization of Au NPs on surfaces. The binding of citrate‐stabilized Au NPs to the PEG brushes depends on the size of the particles and molecular weight of the brushes: the density of NPs immobilized on the nanopatterns of PEG brushes increases with decreasing the diameter of the particles and increasing the chain length of the brushes. The key aspect of the process is to pattern PEG brushes with high resolution and chemical contrast to provide controllable and specific interaction between Au NPs and nanopatterns at a single particle resolution. The modulation of the number (0–4) of Au NPs (e.g., 30 nm) per patterned feature with a high level of accuracy and the generation of patterned heterostructures that consist of two different sizes (e.g., 40 and 20 nm) of particles constitute two examples showing the capabilities of the presented platform.  相似文献   

7.
A nanocarrier system of d ‐a‐tocopheryl polyethylene glycol 1000 succinate (TPGS)‐functionalized polydopamine‐coated mesoporous silica nanoparticles (NPs) is developed for sustainable and pH‐responsive delivery of doxorubicin (DOX) as a model drug for the treatment of drug‐resistant nonsmall cell lung cancer. Such nanoparticles are of desired particle size, drug loading, and drug release profile. The surface morphology, surface charge, and surface chemical properties are also successfully characterized by a series of techniques such as transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS), Brunauer‐Emmett‐Teller (BET) method, thermal gravimetric analysis (TGA), dynamic light scattering (DLS), and Fourier transform infrared spectroscopy (FTIR). The normal A549 cells and drug‐resistant A549 cells are employed to access the cytotoxicity and cellular uptake of the NPs. The therapeutic effects of TPGS‐conjugated nanoparticles are evaluated in vitro and in vivo. Compared with free DOX and DOX‐loaded NPs without TPGS ligand modification, MSNs‐DOX@PDA‐TPGS exhibits outstanding capacity to overcome multidrug resistance and shows better in vivo therapeutic efficacy. This splendid drug delivery platform can also be sued to deliver other hydrophilic and hydrophobic drugs.  相似文献   

8.
A new strategy is presented for using doped small‐molecule organic nanoparticles (NPs) to achieve high‐performance fluorescent probes with strong brightness, large Stokes shifts and tunable emissions for in vitro and in vivo imaging. The host organic NPs are used not only as carriers to encapsulate different doped dyes, but also as fluorescence resonance energy transfer donors to couple with the doped dyes (as acceptors) to achieve multicolor luminescence with amplified emissions (AE). The resulting optimum green emitting NPs show high brightness with quantum yield (QY) of up to 45% and AE of 12 times; and the red emitting NPs show QY of 14% and AE of 10 times. These highly‐luminescent doped NPs can be further surface modified with poly(maleic anhydride‐alt‐1‐octadecene)‐polyethylene glycol (C18PMH‐PEG), endowing them with excellent water dispersibility and robust stability in various bio‐environments covering wide pH values from 2 to 10. In this study, cytotoxicity studies and folic acid targeted cellular imaging of these multicolor probes are carried out to demonstrate their potential for in vitro imaging. On this basis, applications of the NP probes in in vivo and ex vivo imaging are also investigated. Intense fluorescent signals of the doped NPs are distinctly, selectively and spatially resolved in tumor sites with high sensitivity, due to the preferential accumulation of the NPs in tumor sites through the passive enhanced permeability and retention effect. The results clearly indicate that these doped NPs are promising fluorescent probes for biomedical applications.  相似文献   

9.
The dynamic behaviour of gold nanoparticles functionalised with glucose (Glc‐Au NPs) has been studied here by means of fluorescence correlation spectroscopy (FCS). Meaningful data on the state of aggregation and dynamics of Glc‐Au NPs fluorescently‐labelled with HiLyte Fluor647 (Glc‐Au‐Hi NPs) in the intracellular environment were obtained. Moreover, the work presented here shows that FCS can be used to visualise the presence of single NPs or NP aggregates following uptake and to estimate, locally, NP concentrations within the cell. FCS measurements become possible after applying a “prebleaching” methodology, when the immobile NP fraction has been effectively removed and thus significant FCS data has been recorded. In this study, Glc‐Au‐Hi NPs have been incubated with HepG2 cells and their diffusion time in the intracellular environment has been measured and compared with their diffusion value in water and cell media.  相似文献   

10.
The cellular uptake and distribution of five types of well-characterized anatase and rutile TiO(2) nanoparticles (NPs) in A549 lung epithelial cells is reported. Static light scattering (SLS), in-vitro Raman microspectroscopy (μ-Raman) and transmission electron spectroscopy (TEM) reveal an intimate correlation between the intrinsic physicochemical properties of the NPs, particle agglomeration, and cellular NP uptake. It is shown that μ-Raman facilitates chemical-, polymorph-, and size-specific discrimination of endosomal-particle cell uptake and the retention of particles in the vicinity of organelles, including the cell nucleus, which quantitatively correlates with TEM and SLS data. Depth-profiling μ-Raman coupled with hyperspectral data analysis confirms the location of the NPs in the cells and shows that the NPs induce modifications of the biological matrix. NP uptake is found to be kinetically activated and strongly dependent on the hard agglomeration size-not the primary particle size-which quantitatively agrees with the measured intracellular oxidative stress. Pro-inflammatory responses are also found to be sensitive to primary particle size.  相似文献   

11.
Park HS  Lee JE  Cho MY  Noh YW  Sung MH  Poo H  Hong KS  Lim YT 《Nanotechnology》2011,22(46):465603
pH-stimuli-responsive near-infrared optical imaging nanoprobes are designed and synthesized in this study in a facile one-step synthesis process based on the use of the biocompatible and biodegradable polymer poly(γ-glutamic acid) (γ-PGA)/poly(β-amino ester) (PBAE). PBAE has good transfection efficiency and promotes degradation properties under acidic conditions. This pH-responsive degradability can be used for the effective release of encapsulating materials after cellular uptake. As an optical imaging probe, indocyanine green (ICG) is an FDA-approved near-infrared fluorescent dye with a quenching property at a high concentration. In this regard, we focus here on the rapid degradation of PBAE in an acidic environment, in which the nanoparticles are disassembled. This allows the ICG dyes to show enhanced fluorescence signals after being releasing from the particles. We demonstrated this principle in cellular uptake experiments. We expect that the developed pH-stimuli-responsive smart nanoprobes can be applied in intracellular delivery signaling applications.  相似文献   

12.
This study addresses the cellular uptake and intracellular trafficking of 15‐nm gold nanoparticles (NPs), either plain (i.e., stabilized with citrate) or coated with polyethylene glycol (PEG), exposed to human alveolar epithelial cells (A549) at the air–liquid interface for 1, 4, and 24 h. Quantitative analysis by stereology on transmission electron microscopy images reveals a significant, nonrandom intracellular distribution for both NP types. No particles are observed in the nucleus, mitochondria, endoplasmic reticulum, or golgi. The cytosol is not a preferred cellular compartment for both NP types, although significantly more PEG‐coated than citrate‐stabilized NPs are present there. The preferred particle localizations are vesicles of different sizes (<150, 150–1000, >1000 nm). This is observed for both NP types and indicates a predominant uptake by endocytosis. Subsequent inhibition of caveolin‐ and clathrin‐mediated endocytosis by methyl‐β‐cyclodextrin (MβCD) results in a significant reduction of intracellular NPs. The inhibition, however, is more pronounced for PEG‐coated than citrate‐stabilized NPs. The latter are mostly found in larger vesicles; therefore, they are potentially taken up by macropinocytosis, which is not inhibited by MβCD. With prolonged exposure times, both NPs are preferentially localized in larger‐sized intracellular vesicles such as lysosomes, thus indicating intracellular particle trafficking. This quantitative evaluation reveals that NP surface coatings modulate endocytotic uptake pathways and cellular NP trafficking. Other nonendocytotic entry mechanisms are found to be involved as well, as indicated by localization of a minority of PEG‐coated NPs in the cytosol.  相似文献   

13.
Although many studies reporting the organ‐level biodistribution of nanoparticles (NPs) in animals, very few have addressed the fate of NPs in organs at the cellular level. The liver appears to be the main organ for accumulation of NPs after intravenous injection. In this study, for the first time, the in vivo spatiotemporal disposition of recently developed mercaptosuccinic acid (MSA)‐capped cadmium telluride/cadmium sulfide (CdTe/CdS) quantum dots (QDs) is explored in rat liver using multiphoton microscopy (MPM) coupled with fluorescence lifetime imaging (FLIM), with subcellular resolution (~1 μm). With high fluorescence efficiency and largely improved stability in the biological environment, these QDs show a distinct distribution pattern in the liver compared to organic dyes, rhodamine 123 and fluorescein. After intravenous injection, fluorescent molecules are taken up by hepatocytes and excreted into the bile, while negatively charged QDs are retained in the sinusoids and selectively taken up by sinusoidal cells (Kupffer cells and liver sinusoidal endothelial cells), but not by hepatocytes within 3 h. The results could help design NPs targeting the specific types of liver cells and choose the fluorescent markers for appropriate cellular imaging.  相似文献   

14.
Despite intense research on biological and biomedical applications of nanoparticles, our understanding of their basic interactions with the biological environment is still incomplete. Systematic variation of the physicochemical properties of the nanoparticles is widely seen as a promising strategy to obtain further insights. In view of the key role of the protein adsorption layer forming on nanoparticles in contact with biofluids, we systematically varied the surface charge of proteins adsorbing onto nanoparticles by chemical modification so as to examine the effect of Coulomb forces in modulating nano‐bio interactions. We chose human serum albumin (HSA) as a model protein and ultra‐small, negatively charged fluorescent gold nanoclusters (AuNCs) as model nanoparticles. By using fluorescence and CD spectroscopies, we measured binding affinities and structural changes upon binding of the HSA variants. The strengths of the protein‐nanoparticle interactions were found to change substantially upon modifying the surface charge of HSA. Furthermore, by using inductively coupled plasma optical emission spectroscopy, confocal fluorescence microscopy, scanning transmission electron microscopy and cell viability assays, we observed that cellular interactions of the AuNCs, including their adherence to cell membranes, uptake efficiency and cytotoxicity, depended markedly on the different surface charges of the HSA variants adsorbed onto the nanoparticles. These results illustrate vividly that the cellular responses to nanoparticle exposure depend on the specific properties of the proteins that adsorb onto nanoparticles from biofluids.  相似文献   

15.
The concept of drug delivery using magnetic nanoparticles greatly benefit from the fact that nanotechnology has developed to a stage that it makes possible not only to produce magnetic nanoparticles in a very narrow size distribution range with superparamagnetic properties but also to engineer particle surfaces to provide site specific delivery of drugs. The size and surface characteristics of the nanoparticles are crucial factors that determine the success of the particles when used in vivo. The aim of this study was to modify the surfaces of the magnetic nanoparticles with PEG to improve the biocompatibility of the nanoparticles by resisting protein adsorption and increasing their intracellular uptake. In this study, the poly(ethyleneglycol) (PEG) modified superparamagnetic iron oxide nanoparticles have been prepared and their influence on human dermal fibroblasts is assessed in terms of cell adhesion/viability, morphology, particle uptake and cytoskeletal organisation studies. Various techniques have been used to determine nanoparticle-cell interactions including light, fluorescence, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The modification of nanoparticle surface induced alterations in cell behaviour distinct from the unmodified particles, suggesting that cell response can be directed via specifically engineered particle surfaces.  相似文献   

16.
A highly emissive far‐red/near‐infrared (FR/NIR) fluorescent conjugated polymer (CP), poly[(9,9‐dihexylfluorene)‐co‐2,1,3‐benzothiadiazole‐co‐4,7‐di(thiophen‐2‐yl)‐2,1,3‐benzothiadiazole] (PFBTDBT10) is designed and synthesized via Suzuki polymerization. Formulation of PFBTDBT10 using 1,2‐distearoyl‐sn‐glycero‐3‐phosphoethanolamine‐N‐[methoxy(polyethylene glycol)‐2000] (DSPE‐PEG2000) and DSPE‐PEG5000‐folate as the encapsulation matrix yielded CP‐loaded DSPE‐PEG‐folic acid nanoparticles (CPDP‐FA NPs) with bright FR/NIR fluorescence (27% quantum yield) and a large Stoke's shift of 233 nm in aqueous solution. CPDP‐FA NPs show improved thermal/photostabilities and larger Stoke's shifts as compared to commercially available quantum dots (Qdot 655) and organic dyes such as Alexa Fluor 555 and Rhodamine 6G. In vivo studies of CPDP‐FA NPs on a hepatoma H22 tumor‐bearing mouse model reveal that they could serve as an efficient FR/NIR fluorescent probe for targeted in vivo fluorescence imaging and cancer detection in a high contrast and specific manner. Together with the negligible in vivo toxicity, CPDP‐FA NPs are promising FR/NIR fluorescent probes for future in vivo applications.  相似文献   

17.
Microcapsules consisting of hydrogel shells cross‐linked by glucosamine–boronate ester complexes and duplex nucleic acids, loaded with dyes or drugs and functionalized with Au nanoparticles (Au NPs) or Au nanorods (Au NRs), are developed. Irradiation of Au NPs or Au NRs results in the thermoplasmonic heating of the microcapsules, and the dissociation of the nucleic acid cross‐linkers. The separation of duplex nucleic acid cross‐linkers leads to low‐stiffness hydrogel shells, allowing the release of loads. Switching off the light‐induced plasmonic heating results in the regeneration of stiff hydrogel shells protecting the microcapsules, leading to the blockage of release processes. The thermoplasmonic release of tetramethylrhodamine‐dextran, Texas Red‐dextran, doxorubicin‐dextran (DOX‐D), or camptothecin‐carboxymethylcellulose (CPT‐CMC) from the microcapsules is introduced. By loading the microcapsules with two different drugs (DOX‐D and CPT‐CMC), the light‐controlled dose release is demonstrated. Cellular experiments show efficient permeation of Au NPs/DOX‐D or Au NRs/DOX‐D microcapsules into MDA‐MB‐231 cancer cells and inefficient uptake by MCF‐10A epithelial breast cells. Cytotoxicity experiments reveal selective thermoplasmon‐induced cytotoxicity of the microcapsules toward MDA‐MB‐231 cancer cells as compared to MCF‐10A cells. Also, selective cytotoxicity towards MDA‐MB‐231 cancer cells upon irradiation of the Au NPs‐ and Au NRs‐functionalized microcapsules at λ = 532 or 910 nm is demonstrated.  相似文献   

18.
Yao Y  Sun Z  Zou Z  Li H 《Nanotechnology》2011,22(43):435502
Quinoline derivatives were brought into the surface of gold nanoparticles (Au NPs) through click chemistry. The fluorescence was quenched by Au NPs because of electron transfer between Au NPs and quinoline. However, upon addition of Cd(2+) to the quinoline-triazole Au NP solution, it exhibited an effective switch-on fluorescence response, owing to the coordination between quinoline and Cd(2+) which can efficiently block the electron transfer. What's more, the fluorescent sensor can effectively detect Cd(2+) in aqueous solution with a detection limit of 1.0 × 10(-5) M.  相似文献   

19.
A reliable method to prepare a surface‐enhanced Raman scattering (SERS) active substrate is developed herein, by electrodeposition of gold nanoparticles (Au NPs) on defect‐engineered, large area chemical vapour deposition graphene (GR). A plasma treatment strategy is used in order to engineer the structural defects on the basal plane of large area single‐layer graphene. This defect‐engineered Au functionalized GR, offers reproducible SERS signals over the large area GR surface. The Raman data, along with X‐ray photoelectron spectroscopy and analysis of the water contact angle are used to rationalize the functionalization of the graphene layer. It is found that Au NPs functionalization of the “defect‐engineered” graphene substrates permits detection of concentrations as low as 10?16 m for the probe molecule Rhodamine B, which offers an outstanding molecular sensing ability. Interestingly, a Raman signal enhancement of up to ≈108 is achieved. Moreover, it is observed that GR effectively quenches the fluorescence background from the Au NPs and molecules due to the strong resonance energy transfer between Au NPs and GR. The results presented offer significant direction for the design and fabrication of ultra‐sensitive SERS platforms, and also open up possibilities for novel applications of defect engineered graphene in biosensors, catalysis, and optoelectronic devices.  相似文献   

20.
Targeted delivery of therapeutic agents to prevent smooth muscle cell (SMC) proliferation is important in averting restenosis (a narrowing of blood vessels). Since platelet derived growth factor (PDGF) receptors are over-expressed in proliferating SMCs after injury from cardiovascular interventions, such as angioplasty and stent implantation, our hypothesis is that conjugation of PDGF-BB (platelet-derived growth factor BB (homodimer)) peptides to biodegradable poly (D,L-lactic-co-glycolide) (PLGA) nanoparticles (NPs) would exhibit an increased uptake of these NPs by proliferating SMCs. In this study, poly (D,L-lactide-co-glycolide) (PLGA) nanoparticles containing dexamethasone were formulated and conjugated with PDGF-BB peptides. These NPs were stable, biocompatible, and exhibited a sustained drug release over 14 days. Various particle uptake studies using HASMCs (human aortic smooth muscle cells) demonstrated that PDGF-BB peptide-conjugated nanoparticles significantly increased cellular uptake and decreased proliferation of HASMCs compared to control nanoparticles (without conjugation of PDGF-BB peptides). These NPs were internalized primarily by clathrin-mediated endocytosis and macropinocytosis. Our in vitro results suggest that PDGF-BB peptide-conjugated NPs could represent as an effective targeted, sustained therapeutic delivery system to reduce restenosis and neointimal hyperplasia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号