首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uniformly‐sized, nanostructured peptide microparticles are generated by exploiting the ability of enzymes to serve (i) as catalysts, to control self‐assembly within monodisperse, surfactant‐stabilized water‐in‐oil microdroplets, and (ii) as destabilizers of emulsion interfaces, to enable facile transfer of the produced microparticles to water. This approach combines the advantages of biocatalytic self‐assembly with the compartmentalization properties enabled by droplet microfluidics. Firstly, using microfluidic techniques, precursors of self‐assembling peptide derivatives and enzymes are mixed in the microdroplets which upon catalytic conversion undergo molecular self‐assembly into peptide particles, depending on the chemical nature of the precursors. Due to their amphiphilic nature, enzymes adsorb at the water‐surfactant‐oil interface of the droplets, inducing the transfer of peptide microparticles from the oil to the aqueous phase. Ultimately, through washing steps, enzymes can be removed from the microparticles which results in uniformely‐sized particles composed of nanostructured aromatic peptide amphiphiles.  相似文献   

2.
3.
4.
5.
6.
7.
8.
A nanolithographic approach based on hierarchical peptide self‐assembly is presented. An aromatic peptide of N‐(t‐Boc)‐terminated triphenylalanine is designed from a structural motif for the β‐amyloid associated with Alzheimer's disease. This peptide adopts a turnlike conformation with three phenyl rings oriented outward, which mediate intermolecular ππ stacking interactions and eventually facilitate highly crystalline bionanosphere assembly with both thermal and chemical stability. The self‐assembled bionanospheres spontaneously pack into a hexagonal monolayer at the evaporating solvent edge, constituting evaporation‐induced hierarchical self‐assembly. Metal nanoparticle arrays or embossed Si nanoposts could be successfully created from the hexagonal bionanosphere array masks in conjunction with a conventional metal‐evaporation or etching process. Our approach represents a bionanofabrication concept that biomolecular self‐assembly is hierarchically directed to establish a straightforward nanolithography compatible with conventional device‐fabrication processes.  相似文献   

9.
10.
11.
The synthesis and characterization of novel DNA structures based on tetraplex cytosine (C) arrangements, known as i‐motifs or i‐tetraplexes, is reported. Atomic force microscopy (AFM) investigation shows that long C‐strands in mild acidic conditions form compact spherically shaped nanostructures. The DNA nanospheres are characterized by a typical uniform shape and narrow height distribution. Electrostatic force microscopy (EFM) measurements performed on the i‐motif spheres clearly show their electrical polarizability. Further investigations by scanning tunneling microscopy (STM) at ultrahigh vacuum reveals that the structures exhibit an average voltage gap of 1.9 eV, which is narrower than the voltage gap previously measured for poly(dG)–poly(dC) molecules in similar conditions.  相似文献   

12.
13.
14.
15.
16.
17.
18.
Nanoscience and nanotechnology offer great opportunities and challenges in both fundamental research and practical applications, which require precise control of building blocks with micro/nanoscale resolution in both individual and mass‐production ways. The recent and intensive nanotechnology development gives birth to a new focus on nanomembrane materials, which are defined as structures with thickness limited to about one to several hundred nanometers and with much larger (typically at least two orders of magnitude larger, or even macroscopic scale) lateral dimensions. Nanomembranes can be readily processed in an accurate manner and integrated into functional devices and systems. In this Review, a nanotechnology perspective of nanomembranes is provided, with examples of science and applications in semiconductor, metal, insulator, polymer, and composite materials. Assisted assembly of nanomembranes leads to wrinkled/buckled geometries for flexible electronics and stacked structures for applications in photonics and thermoelectrics. Inspired by kirigami/origami, self‐assembled 3D structures are constructed via strain engineering. Many advanced materials have begun to be explored in the format of nanomembranes and extend to biomimetic and 2D materials for various applications. Nanomembranes, as a new type of nanomaterials, allow nanotechnology in a controllable and precise way for practical applications and promise great potential for future nanorelated products.  相似文献   

19.
Coordination cages encapsulate a wide variety of guests in the solution state. This ability renders them useful for applications such as catalysis and the sequestration of precious materials. A simple and general method for the immobilization of coordination cages on alumina is reported. Cage loadings are quantified via adsorption isotherms and guest displacement assays demonstrate that the adsorbed cages retain the ability to encapsulate and separate guest and non‐guest molecules. Finally, a system of two cages, adsorbed on to different regions of alumina, stabilizes and separates a pair of Diels–Alder reagents. The addition of a single competitive guest results in the controlled release of the reagents, thus triggering their reaction. This method of coordination cage immobilization on solid phases is envisaged to be applicable to the extensive library of reported cages, enabling new applications based upon selective solid‐phase molecular encapsulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号