首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Inorganic nanowires are among the most attractive functional materials, which have emerged in the past two decades. They have demonstrated applications in information technology and energy conversion, but their utility in biological or biomedical research remains relatively under‐explored. Although nanowire‐based sensors have been frequently reported for biomolecular detection, interfacing nanowire arrays and living mammalian cells for the direct analysis of cellular functions is a very recent endeavor. Cell‐penetrating nanowires enabled effective delivery of biomolecules, electrical and optical stimulation and recording of intracellular signals over a long period of time. Non‐penetrating, high‐density nanowire arrays display rich interactions between the nanostructured substrate and the micro/nanoscale features of cell surfaces. Such interactions enable efficient capture of rare cells including circulating tumor cells and trafficking leukocytes from complex biospecimens. It also serves as a platform for probing cell traction force and neuronal guidance. The most recent advances in the field that exploits nanowire arrays (both penetrating and non‐penetrating) to perform rapid analysis of cellular functions potentially for disease diagnosis and monitoring are reviewed.  相似文献   

5.
A novel phase transition, from multilayered 2H‐MoTe2 to a parallel bundle of sub‐nanometer‐diameter metallic Mo6Te6 nanowires (NWs) driven by catalyzer‐free thermal‐activation (400–500 °C) under vacuum, is demonstrated. The NWs form along the 〈11–20〉 2H‐MoTe2 crystallographic directions with lengths in the micrometer range. The metallic NWs can act as an efficient hole injection layer on top of 2H‐MoTe2 due to favorable band‐alignment. In particular, an atomically sharp MoTe2/Mo6Te6 interface and van der Waals gap with the 2H layers are preserved. The work highlights an alternative pathway for forming a new transition metal dichalcogenide phase and will enable future exploration of its intrinsic transportation properties.  相似文献   

6.
Silver nanowire (AgNW) random meshes have attracted considerable attention as flexible and high‐performance transparent electrodes. Notably, post‐treatment of the AgNW random meshes, such as thermal annealing, is usually required to guarantee comparable optical transparency and electrical conductivity to commercial indium tin oxide (ITO). Here, the integral elements of preparing a high‐performance, large‐area AgNW random mesh network are discussed. High‐performance nanostructured transparent electrodes can be obtained without any post‐treatment, thereby relieving the restrictions related to the substrate. Solvent washing and a large‐area spray‐coating method effectively reduce the wire–wire contact resistances, thus reducing or eliminating the requirement for post‐treatment.  相似文献   

7.
8.
The diffraction limit for lensless imaging, defined as the sharpest possible point image obtainable with a pinhole aperture, is analyzed and compared to the corresponding limit for imaging with lenses by means of theoretical considerations and numerical computations using the Fresnel-Lommel diffraction theory for circular apertures. The numerical result (u = π) obtained for the best configuration parameter u which defines the optical setup is consistent with the quarter-wave criterion, and is the same as the value reported in a classical paper by Petzval but smaller than the value (u = 1.8π) found by Lord Rayleigh. The smallest discernible detail (pixel) in a composite image is defined by an expression found by Rayleigh on applying the half-wave criterion and is shown to be consistent with the Sparrow criterion of resolution. The numerical values of other measures of image size are reported and compared to equivalent parameters of the Fraunhofer-Airy profile that governs imaging with lenses.  相似文献   

9.
10.
11.
12.
Planar micro‐supercapacitors are attractive for system on chip technologies and surface mount devices due to their large areal capacitance and energy/power density compared to the traditional oxide‐based capacitors. In the present work, a novel material, niobium nanowires, in form of vertically aligned electrodes for application in high performance planar micro‐supercapacitors is introduced. Specific capacitance of up to 1 kF m?2 (100 mF cm?2) with peak energy and power density of 2 kJ m?2 (6.2 MJ m?3 or 1.7 mWh cm?3) and 150 kW m?2 (480 MW m?3 or 480 W cm?3), respectively, is achieved. This remarkable power density, originating from the extremely low equivalent series resistance value of 0.27 Ω (2.49 µΩ m2 or 24.9 mΩ cm2) and large specific capacitance, is among the highest for planar micro‐supercapacitors electrodes made of nanomaterials.  相似文献   

13.
Temperature‐responsive magnetic nanomicelles can serve as thermal energy and cargo carriers with controlled drug release functionality. In view of their potential biomedical applications, understanding the modes of interaction between nanomaterials and living systems and evaluation of efficiency of cargo delivery is of the utmost importance. In this work, we investigate the interaction between the hybrid magnetic nanomicelles engineered for controlled platinum complex drug delivery and a biological system at three fundamental levels: subcellular compartments, a single cell and whole living animal. Nanomicelles with polymeric P(NIPAAm‐co‐AAm)‐b‐PCL core‐shell were loaded with a hydrophobic Pt(IV) complex and Fe3O4 nanoparticles though self‐assembly. The distribution of a platinum complex on subcellular level is visualized using hard X‐ray fluorescence microscopy with unprecedented level of detail at sub‐100 nm spatial resolution. We then study the cytotoxic effects of platinum complex‐loaded micelles in vitro on a head and neck cancer cell culture model SQ20B. Finally, by employing the magnetic functionality of the micelles and additionally loading them with a near infrared fluorescent dye, we magnetically target them to a tumor site in a live animal xenografted model which allows to visualize their biodistribution in vivo.  相似文献   

14.
15.
16.
New techniques to directly grow metal oxide nanowire networks without the need for initial nanoparticle seed deposition or postsynthesis nanowire casting will bridge the gap between bottom‐up formation and top‐down processing for many electronic, photonic, energy storage, and conversion technologies. Whether etched top‐down, or grown from catalyst nanoparticles bottom‐up, nanowire growth relies on heterogeneous material seeds. Converting surface oxide films, ubiquitous in the microelectronics industry, to nanowires and nanowire networks by the incorporation of extra species through interdiffusion can provide an alternative deposition method. It is shown that solution‐processed thin films of oxides can be converted and recrystallized into nanowires and networks of nanowires by solid‐state interdiffusion of ionic species from a mechanically contacted donor substrate. NaVO3 nanowire networks on smooth Si/SiO2 and granular fluorine‐doped tin oxide surfaces can be formed by low‐temperature annealing of a Na diffusion species‐containing donor glass to a solution‐processed V2O5 thin film, where recrystallization drives nanowire growth according to the crystal habit of the new oxide phase. This technique illustrates a new method for the direct formation of complex metal oxide nanowires on technologically relevant substrates, from smooth semiconductors, to transparent conducting materials and interdigitated device structures.  相似文献   

17.
Transparent conducting electrodes (TCEs) are considered to be an essential structural component of flexible organic solar cells (FOSCs). Silver nanowire (AgNW) electrodes are widely used as TCEs owing to their excellent electrical and optical properties. The fabrication of AgNW electrodes has faced challenges in terms of forming large uniform interconnected networks so that high conductivity and reproducibility can be achieved. In this study, a simple method for creating an intimate contact between AgNWs that uses cold isostatic pressing (CIP) is demonstrated. This method increases the conductivity of the AgNW electrodes, which enables the fabrication of high‐efficiency inverted FOSCs that have a power conversion efficiency of 8.75% on flexible polyethylene terephthalate with no short circuiting occurring as the CIP process minimizes the surface roughness of the AgNW electrode. This allows to achieve 100% manufacturing yield of FOSCs. Furthermore, these highly efficient FOSCs are proven to only be 2.4% less efficient even for an extreme bending radius of R ≈ 1.5 mm, compared with initial efficiency.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号