共查询到14条相似文献,搜索用时 15 毫秒
1.
球形纳米银粒子制备新方法及其表征 总被引:1,自引:0,他引:1
采用水热法,不添加任何还原剂,在表面活性剂聚乙烯吡咯烷酮(polyvinyl pyrrolidone,PVP)的保护下,热分解碳酸银制得纳米银溶胶.将纳米银溶胶经过后续离心分离,干燥后得到纳米银粉.通过改变反应温度、反应时间、表面活性剂浓度、种类及反应物浓度等反应条件,分析了各反应条件对纳米银粒子形貌的影响.利用X射线衍射仪(X-ray diffraction,XRD)、扫描电子显微镜(scanning electron microscope,SEM)和电子能谱仪(energy dispersivespectroscopy,EDS)分析表明,在反应温度为180℃、反应时间为5 h、AgNO3浓度为0.1 mol/L、NaHCO3浓度为0.05mol/L、PVP为1.7 g的最佳制备工艺条件下,纳米银粒子为球形,粒径分布范围窄,单一分散,粒径40 nm左右.结果表明,表面分散剂PVP以及AgNO3与NaHCO3的浓度对球形纳米银的合成具有关键作用. 相似文献
2.
3.
4.
Hung‐Jen Yen Shan‐hui Hsu Ching‐Lin Tsai 《Small (Weinheim an der Bergstrasse, Germany)》2009,5(13):1553-1561
The immunological response of macrophages to physically produced pure Au and Ag nanoparticles (NPs) (in three different sizes) is investigated in vitro. The treatment of either type of NP at ≥10 ppm dramatically decreases the population and increases the size of the macrophages. Both NPs enter the cells but only AuNPs (especially those with smaller diamter) up‐regulate the expressions of proinflammatory genes interlukin‐1 (IL‐1), interlukin‐6 (IL‐6), and tumor necrosis factor (TNF‐α). Transmission electron microscopy images show that AuNPs and AgNPs are both trapped in vesicles in the cytoplasma, but only AuNPs are organized into a circular pattern. It is speculated that part of the negatively charged AuNPs might adsorb serum protein and enter cells via the more complicated endocytotic pathway, which results in higher cytotoxicity and immunological response of AuNPs as compared to AgNPS. 相似文献
5.
Pontus Cronholm Hanna L. Karlsson Jonas Hedberg Troy A. Lowe Lina Winnberg Karine Elihn Inger Odnevall Wallinder Lennart Möller 《Small (Weinheim an der Bergstrasse, Germany)》2013,9(7):970-982
An increased understanding of nanoparticle toxicity and its impact on human health is essential to enable a safe use of nanoparticles in our society. The aim of this study is to investigate the role of a Trojan horse type mechanism for the toxicity of Ag‐nano and CuO‐nano particles and their corresponding metal ionic species (using CuCl2 and AgNO3), i.e., the importance of the solid particle to mediate cellular uptake and subsequent release of toxic species inside the cell. The human lung cell lines A549 and BEAS‐2B are used and cell death/membrane integrity and DNA damage are investigated by means of trypan blue staining and the comet assay, respectively. Chemical analysis of the cellular dose of copper and silver is performed using atomic absorption spectroscopy. Furthermore, transmission electron microscopy, laser scanning confocal microscopy, and confocal Raman microscopy are employed to study cellular uptake and particle‐cell interactions. The results confirm a high uptake of CuO‐nano and Ag‐nano compared to no, or low, uptake of the soluble salts. CuO‐nano induces both cell death and DNA damage whereas CuCl2 induces no toxicity. The opposite is observed for silver, where Ag‐nano does not cause any toxicity, whereas AgNO3 induces a high level of cell death. In conclusion: CuO‐nano toxicity is predominantly mediated by intracellular uptake and subsequent release of copper ions, whereas no toxicity is observed for Ag‐nano due to low release of silver ions within short time periods. 相似文献
6.
Differences in the Toxicological Potential of 2D versus Aggregated Molybdenum Disulfide in the Lung
下载免费PDF全文

Xiang Wang Nikhita D. Mansukhani Linda M. Guiney Zhaoxia Ji Chong Hyun Chang Meiying Wang Yu‐Pei Liao Tze‐Bin Song Bingbing Sun Ruibin Li Tian Xia Mark C. Hersam André E. Nel 《Small (Weinheim an der Bergstrasse, Germany)》2015,11(38):5079-5087
2D molybdenum disulfide (MoS2) has distinct optical and electronic properties compared to aggregated MoS2, enabling wide use of these materials for electronic and biomedical applications. However, the hazard potential of MoS2 has not been studied extensively. Here, a comprehensive analysis of the pulmonary hazard potential of three aqueous suspended forms of MoS2—aggregated MoS2 (Agg‐MoS2), MoS2 exfoliated by lithiation (Lit‐MoS2), and MoS2 dispersed by Pluronic F87 (PF87‐MoS2)—is presented. No cytotoxicity is detected in THP‐1 and BEAS‐2B cell lines. However, Agg‐MoS2 induces strong proinflammatory and profibrogenic responses in vitro. In contrast, Lit‐ and PF87‐MoS2 have little or no effect. In an acute toxicity study in mice, Agg‐MoS2 induces acute lung inflammation, while Lit‐MoS2 and PF87‐MoS2 have little or no effect. In a subchronic study, there is no evidence of pulmonary fibrosis in response to all forms of MoS2. These data suggest that exfoliation attenuates the toxicity of Agg‐MoS2, which is an important consideration toward the safety evaluation and use of nanoscale MoS2 materials for industrial and biological applications. 相似文献
7.
Mammalian Cells Exhibit a Range of Sensitivities to Silver Nanoparticles that are Partially Explicable by Variations in Antioxidant Defense and Metallothionein Expression
下载免费PDF全文

Haiyuan Zhang Xiang Wang Meiying Wang Linjiang Li Chong Hyun Chang Zhaoxia Ji Tian Xia Andre E. Nel 《Small (Weinheim an der Bergstrasse, Germany)》2015,11(31):3797-3805
While it is well known that there are interspecies differences in Ag sensitivity, differences in the cytotoxic responses of mammalian cells to silver nanoparticles (Ag NPs) are also observed. In order to explore these response outcomes, six cell lines, including epithelial cells (Caco‐2, NHBE, RLE‐6TN, and BEAS‐2B) and macrophages (RAW 264.7 and THP‐1) of human and rodent origin, are exposed to 20 nm citrate‐ and PVP‐coated Ag NPs with Au cores, as well as 20 nm citrate‐coated particles without cores. An MTS assay shows that while Caco‐2 and NHBE cells are resistant to particles over a 0.1–50 μg mL?1 dose range, RAW 264.7, THP‐1, RLE‐6TN, and BEAS‐2B cells are more susceptible. While there are small differences in dissolution rates, there are no major differences in the cytotoxic potential of the different particles. However, differences in anti‐oxidant defense and metallothionein expression among different cell types are observed, which can partially explain differential Ag NP sensitivity. So, it is important to consider these differences in understanding the potential heterogeneous effects of nano Ag on mammalian biological systems. 相似文献
8.
染料包覆胶态银纳米粒子掺杂的有机复合膜的制备与光吸收特性 总被引:2,自引:0,他引:2
为避免传统的湿化学法制备纳米掺杂复合材料中热处理给材料性能带来的负面影响,提出了一种简易可行的工艺方法:通过胶体化学法制备出稳定的胶态银纳米粒子分散系,以它为纳米粒子来源,使有机染料罗丹名6G(R6G)分子包覆到银纳米胶粒表面,将该胶体分散系均匀掺杂到明胶溶液中,制备出染料包覆胶态银纳米粒子掺杂的有机复合膜.本工作成功地制备出无机/有机活性基元掺杂的三元系复合膜,实现了染料分子对金属纳米粒子完全意义上包覆的设想和对活性基元的室温包埋工艺.电镜(TEM)观测了复合膜的显微结构,对复合膜的UV-Vis吸收光谱进行了测量.给出了一种包覆掺杂的结构模型,并用该模型成功地解释了实验结果. 相似文献
9.
10.
Orna Barash Nir Peled Fred R. Hirsch Hossam Haick 《Small (Weinheim an der Bergstrasse, Germany)》2009,5(22):2618-2624
A highly sensitive and fast‐response array of sensors based on gold nanoparticles, in combination with pattern recognition methods, can distinguish between the odor prints of non‐small‐cell lung cancer and negative controls with 100% accuracy, with no need for preconcentration techniques. Additionally, preliminary results indicate that the same array of sensors might serve as a better tool for understanding the biochemical source of volatile organic compounds that might occur in cancer cells and appear in the exhaled breath, as compared to traditional spectrometry techniques. The reported results provide a launching pad to initiate a bedside tool that might be able to screen for early stages of lung cancer and allow higher cure rates. In addition, such a tool might be used for the immediate diagnosis of fresh (frozen) tissues of lung cancer in operating rooms, where a dichotomic diagnosis is crucial to guide surgeons. 相似文献
11.
12.
利用等离子体电化学法成功制备出银纳米颗粒,并通过局域表面等离子共振效应对颗粒的生长过程进行实时监测,研究了表面活性剂的浓度、种类和前驱物浓度对银纳米颗粒制备的影响。研究结果表明:增大前驱物或表面活性剂浓度对Ag;还原均有促进作用;与聚乙烯吡络烷酮(PVP)和十六烷基三甲基溴化铵(CTAB)相比较,十二烷基硫酸钠(SDS)作为表面活性剂,在相同时间内,生成的银纳米颗粒数量更多,尺寸和形状分布更均匀。 相似文献
13.
14.
K. Boboridis A. Seifter A. W. Obst D. Basak 《International Journal of Thermophysics》2004,25(4):1187-1202
The radiance temperatures at four wavelengths (in the range of 1500 to 5000 nm) of tin, zinc, aluminum, and silver at their respective melting points were measured by a pulse-heating technique using a high-speed fiber-coupled four-wavelength infrared pyrometer. The method is based on rapid resistive self-heating of a sample from room temperature to its melting point in less than 1 s while measuring the radiance emitted by it in four wavelength bands as a function of time. A plateau in the recorded radiance-versus-time traces indicates melting of the sample. The melting-point radiance temperatures for a given sample are determined by averaging the measured temperatures along the plateau at each wavelength. The melting-point radiance temperatures for each metal are, in turn, determined by averaging results for several samples. The normal spectral emittances at the melting transition of each metal are derived from the measured radiances at each wavelength and the published values of the thermodynamic (true) melting temperatures. 相似文献