首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this work, a novel type of nanomedical platform, the double‐walled Au nanocage/SiO2 nanorattle, is successfully fabricated by combining two “hollow‐excavated strategies”—galvanic replacement and “surface‐protected etching”. The rational design of double‐walled nanostructure based on gold nanocages (AuNCs) and hollow SiO2 shells functionalized respectively with p‐aminothiophenol (pATP) and Tat peptide simultaneously renders the nanoplatforms three functionalities: 1) the whole nanorattle serves as a high efficient drug carrier thanks to the structural characteristics of AuNC and SiO2 shell with hollow interiors and porous walls; 2) the AuNC with large electromagnetic enhancement acts as a sensitive surface‐enhanced Raman scattering (SERS) substrate to track the internalization process of the nanorattles by human MCF‐7 breast cancer cells, as well as an efficient photothermal transducer for localized hyperthermia cancer therapy due to the strong near‐infrared absorption; 3) Tat‐functionalized SiO2 shell not only improves biocompatibility and cell uptake efficiency resulting in enhanced anticancer efficacy but also prevents the AuNCs from aggregation and provides the stability of AuNCs so that the SERS signals can be used for cell tracking in high fidelity. The reported chemistry and the designed nanostructures should inspire more interesting nanostructures and applications.  相似文献   

3.
4.
5.
A new classification on the different types of fullerene‐containing polymers is presented according to their different properties and applications they exhibit in a variety of fields. Because of their interest and novelty, water‐soluble and biodegradable C60‐polymers are discussed first, followed by polyfullerene‐based membranes where unprecedented supramolecular structures are presented. Next are compounds that involve hybrid materials formed from fullerenes and other components such as silica, DNA, and carbon nanotubes (CNTs) where the most recent advances have been achieved. A most relevant topic is still that of C60‐based donor‐acceptor (D–A) polymers. Since their application in photovoltaics D–A polymers are among the most realistic applications of fullerenes in the so‐called molecular electronics. The most relevant aspects in these covalently connected fullerene/polymer hybrids as well as new concepts to improve energy conversion efficiencies are presented. The last topics disccused relate to supramolecular aspects that are in involved in C60‐polymer systems and in the self‐assembly of C60‐macromolecular structures, which open a new scenario for organizing, by means of non‐covalent interactions, new supramolecular structures at the nano‐ and micrometric scale, in which the combination of the hydrofobicity of fullerenes with the versatility of the noncovalent chemistry afford new and spectacular superstructures.  相似文献   

6.
Galvanic replacement reactions (GRRs) on nanoparticles (NPs) are typically performed between two metals, i.e., a solid metal NP and a replacing salt solution of a more noble metal. The solution pH in GRRs is commonly considered an irrelevant parameter. Yet, the solution pH plays a major role in GRRs involving metal oxide NPs. Here, Cu2O nanocrystals (NCs) are studied as galvanic replacement (GR) precursors, undergoing replacement by gold and palladium, with the resulting nanostructures showing a strong dependence on the pH of the replacing metal salt solution. GRRs are reported for the first time on supported (chemically deposited) oxide NCs and the results are compared with those obtained with corresponding colloidal systems. Control of the pH enables production of different nanostructures, from metal‐decorated Cu2O NCs to uniformly coated Cu2O‐in‐metal (Cu2O@Me) core–shell nanoarchitectures. Improved metal nucleation efficiencies at low pHs are attributed to changes in the Cu2O surface charge resulting from protonation of the oxide surface. GR followed by etching of the Cu2O cores provides metal nanocages that collapse upon drying; the latter is prevented using a sol–gel silica overlayer stabilizing the metal nanocages. Metal‐replaced Cu2O NCs and their corresponding stabilized nanostructures may be useful as photocatalysts, electrocatalysts, and nanosensors.  相似文献   

7.
Gold nanocages (AuNCs) and gold nanoclusters (AuClusters) are two classes of advantageous nanostructures with special optical properties, and many other attractive properties. Integrating them into one nanosystem may achieve greater and smarter performance. Herein, a hybrid gold nanostructure for fluorescent and optoacoustic tomography imaging, controlled release of drugs, and photothermal therapy (PTT) is demonstrated. For this nanodrug (EA–AB), an epidermal growth factor receptor (EGFR) inhibitor erlotinib (EB) is loaded into AuNCs, which are then capped and functionalized by biocompatible AuCluster@BSA (BSA = bovine serum albumin) conjugates via electrostatic interaction. Upon cell internalization, the lysosomal proteases and low pH cause the release of EB from EA–AB, and also induce fluorescence restoration of the AuCluster for imaging. Irradiation with near‐infrared light further promotes the drug release and affords a PTT effect as well. The AuNC‐based nanodrug is optoacoustically active, and its biodistribution and metabolic process have been successfully monitored by whole‐body and 3D multispectral optoacoustic tomography imaging. Owing to the combined actions of PTT and EGFR pathway blockage, EA–AB exhibits marked tumor inhibition efficacy in vivo.  相似文献   

8.
Currently, peptide‐based protein‐recognition has been recognized as an effective and promising approach for protein assays. However, sandwiched peptide‐based biosensor with high sensitivity and low background has not been proposed before. Herein, a sandwiched electrochemiluminescence (ECL) peptide‐based biosensor is constructed for Cyclin A2 (CA2), a prognostic indicator in early stage of multiple cancers, based on nanosheets with hollow, magnetic, and ECL self‐enhanced properties. First, hollow and magnetic manganese oxide nanocrystals (H‐Mn3O4) are synthesized using triblock copolymeric micelles with core–shell–corona architecture as templates. Then, polyethyleneimine (PEI) and the composite of platinum nanoparticles and tris (4,4′‐dicarboxylicacid‐2,2′‐bipyridyl) ruthenium (II) (PtNPs–Ru) are immobilized on H‐Mn3O4 to form H‐Mn3O4–PEI–PtNPs–Ru nanocomposite, in which PEI as coreactant can effectively enhance the luminous efficiency and PtNPs as nanochannels can greatly accelerate the electron transfer. Finally, due to the coordination between Eu3+ and carboxyl, the obtained H‐Mn3O4–PEI–PtNPs–Ru aggregates locally to form sheet‐like nanostructures ((H‐Mn3O4–PEI–PtNPs–Ru)n–Eu3+), by which the luminous efficiency is further increased. Based on the nanosheets and two designed peptides, a sandwiched ECL biosensor, using palladium nanocages synthesized through galvanic replacement reaction as substrate, is proposed for CA2 with a linear range from 0.001 to 100 ng mL?1 and a detection limit of 0.3 pg mL?1.  相似文献   

9.
10.
Molybdenum ditelluride nanosheets encapsulated in few‐layer graphene (MoTe2/FLG) are synthesized by a simple heating method using Te and Mo powder and subsequent ball milling with graphite. The as‐prepared MoTe2/FLG nanocomposites as anode materials for lithium‐ion batteries exhibit excellent electrochemical performance with a highly reversible capacity of 596.5 mAh g?1 at 100 mA g?1, a high rate capability (334.5 mAh g?1 at 2 A g?1), and superior cycling stability (capacity retention of 99.5% over 400 cycles at 0.5 A g?1). Ex situ X‐ray diffraction and transmission electron microscopy are used to explore the lithium storage mechanism of MoTe2. Moreover, the electrochemical performance of a MoTe2/FLG//0.35Li2MnO3·0.65LiMn0.5Ni0.5O2 full cell is investigated, which displays a reversible capacity of 499 mAh g?1 (based on the MoTe2/FLG mass) at 100 mA g?1 and a capacity retention of 78% over 50 cycles, suggesting the promising application of MoTe2/FLG for lithium‐ion storage. First‐principles calculations exhibit that the lowest diffusion barrier (0.18 eV) for lithium ions along pathway III in the MoTe2 layered structure is beneficial for improving the Li intercalation/deintercalation property.  相似文献   

11.
12.
Nanoparticle‐assembled octahedral Ag nanocages with sharp edges have been successfully synthesized through a Cu2O‐based template‐assisted strategy. In the reaction system, Ag nanoparticles can be self‐assembled on the surface of Cu2O octahedrons, which is accomplished by the reduction of Ag+ by NaBH4 in the presence of sodium citrate as a capping agent. The hollow octahedral Ag nanocages are obtained after removing the inner Cu2O cores with acetic acid. According to the scanning electron microscopy (SEM) and transmission electron microscopy characterization, the Ag nanocages are weaved by small nanoparticles, the rough surfaces are bestrewed with pores and sharp edges. It is found that the pack density of Ag nanoparticles strongly affects the surface enhanced Raman scattering (SERS) activities. The as‐prepared 1.05‐Ag cages with optimal pack density have suitable interparticle distance and suitable size of pores, which significantly enhance SERS signals. The SERS signals of rhodamine 6G (R6G) molecules can be detected at an ultralow concentration of 10?14 m when 1.05‐Ag cages are used as substrates. In addition to sensitivity, 1.05‐Ag cages also exhibit good reproducibility. It is expected that the ultrahigh sensitivity will endow the Ag nanocages to become a promising candidate as high‐performance SERS‐based chemical sensor.  相似文献   

13.
14.
Pyrolytic trifluoromethylation of [76], [78], [84], and aza[60]fullerenes with silver trifluoroacetate at 300°C results in extensive polyaddition of up to 18, 18, 20 and 20 CF3 groups, respectively. In contrast to trifluoromethylation of [60]- and [70]fullerenes that give a full range of derivatives ranging upwards from Cn(CF3)2, [76]-, [78]-, and [84]-fullerenes only give Cn(CF3)6-18 derivatives, largely in the 10-12 CF3 range; reaction with [76]fullerene is accompanied by formation of C60(CF3)6 attributed to cage fragmentation. For aza[60]fullerene the hexa-addition level dominates, in contrast to its other reactions which give predominantly penta-addition products. All the compounds showed peaks at 1256±2 and 1180-1190 cm-1, due to the CF3 group, and peaks in this region are shown also by the soluble extract obtained on trifluoromethylation of nanotubes. As in trifluoromethylation of [60]- and [70]-fullerenes, the products obtained initially are involatile, attributed to formation os silver complexes; these are decomposed on subsequent solution in toluene. Mixed isomeric trifluoromethylated C60F8 derivatives viz. C60F7CF3, C60F6(FG3)2, C60F5(CF3)3 and C60F4(CF3)4, and C60F4CF3CF2CF3 (a C60F6 derivative) have been isolated from fluorination of [60]fullerene with MnF3/K2NilF6 at 510°C.  相似文献   

15.
Synthesis of metal–organic materials is often dependent on the reaction conditions of suitable solvent/solvent mixture and temperature. A new finding based on a previously described protocol is reported: instead of obtaining metal–organic polyhedra (MOP), a metal–organic framework (MOF) with a 2D layered structure is obtained, following the same reported protocol. The 2D Cu(II)–5‐prop‐2‐ynoxyisophthlate MOF, crystallized in a kagomé‐type structure, is synthesized using different solvent systems at room temperature, as well as under solvothermal (nonhydrothermal) conditions. Under harsh reaction conditions, alkyne functional groups maintain their integrity and the copper does not catalyze the oxidative coupling of the terminal alkyne groups. X‐ray diffraction analyses confirm the structure and phase purity of the product. Based on the present results and the previous work reported by Zhao et al., it seems that two products, namely 0D MOP and 2D MOF, are equally possible when using the same reactants under same reaction conditions. However, the materials obtained in all the trials are MOF instead of MOP. From the structure point of view, there is a difference in connectivity of the initial building units that determines whether the product is MOP or MOF.  相似文献   

16.
17.
18.
19.
Inspired by biological systems, many biomimetic methods suggest fabrication of functional materials with unique physicochemical properties. Such methods frequently generate organic–inorganic composites that feature highly ordered hierarchical structures with intriguing properties, distinct from their individual components. A striking example is that of DNA–inorganic hybrid micro/nanostructures, fabricated by the rolling circle technique. Here, a novel concept for the encapsulation of bioactive proteins in DNA flowers (DNF) while maintaining the activity of protein payloads is reported. A wide range of proteins, including enzymes, can be simultaneously associated with the growing DNA strands and Mg2PPi crystals during the rolling circle process, ultimately leading to the direct immobilization of proteins into DNF. The unique porous structure of this construct, along with the abundance of Mg ions and DNA molecules present, provides many interaction sites for proteins, enabling high loading efficiency and enhanced stability. Further, as a proof of concept, it is demonstrated that the DNF can deliver payloads of cytotoxic protein (i.e., RNase A) to the cells without a loss in its biological function and structural integrity, resulting in highly increased cell death compared to the free protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号