共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Bright Aggregation‐Induced‐Emission Dots for Targeted Synergetic NIR‐II Fluorescence and NIR‐I Photoacoustic Imaging of Orthotopic Brain Tumors 下载免费PDF全文
Zonghai Sheng Bing Guo Dehong Hu Shidang Xu Wenbo Wu Weng Heng Liew Kui Yao Jingying Jiang Chengbo Liu Hairong Zheng Bin Liu 《Advanced materials (Deerfield Beach, Fla.)》2018,30(29)
Precise diagnostics are of significant importance to the optimal treatment outcomes of patients bearing brain tumors. NIR‐II fluorescence imaging holds great promise for brain‐tumor diagnostics with deep penetration and high sensitivity. This requires the development of organic NIR‐II fluorescent agents with high quantum yield (QY), which is difficult to achieve. Herein, the design and synthesis of a new NIR‐II fluorescent molecule with aggregation‐induced‐emission (AIE) characteristics is reported for orthotopic brain‐tumor imaging. Encapsulation of the molecule in a polymer matrix yields AIE dots showing a very high QY of 6.2% with a large absorptivity of 10.2 L g?1 cm?1 at 740 nm and an emission maximum near 1000 nm. Further decoration of the AIE dots with c‐RGD yields targeted AIE dots, which afford specific and selective tumor uptake, with a high signal/background ratio of 4.4 and resolution up to 38 µm. The large NIR absorptivity of the AIE dots facilitates NIR‐I photoacoustic imaging with intrinsically deeper penetration than NIR‐II fluorescence imaging and, more importantly, precise tumor‐depth detection through intact scalp and skull. This research demonstrates the promise of NIR‐II AIE molecules and their dots in dual NIR‐II fluorescence and NIR‐I photoacoustic imaging for precise brain cancer diagnostics. 相似文献
3.
Photoacoustic Imaging: Bright Aggregation‐Induced‐Emission Dots for Targeted Synergetic NIR‐II Fluorescence and NIR‐I Photoacoustic Imaging of Orthotopic Brain Tumors (Adv. Mater. 29/2018) 下载免费PDF全文
Zonghai Sheng Bing Guo Dehong Hu Shidang Xu Wenbo Wu Weng Heng Liew Kui Yao Jingying Jiang Chengbo Liu Hairong Zheng Bin Liu 《Advanced materials (Deerfield Beach, Fla.)》2018,30(29)
4.
Through Scalp and Skull NIR‐II Photothermal Therapy of Deep Orthotopic Brain Tumors with Precise Photoacoustic Imaging Guidance 下载免费PDF全文
Bing Guo Zonghai Sheng Dehong Hu Chengbo Liu Hairong Zheng Bin Liu 《Advanced materials (Deerfield Beach, Fla.)》2018,30(35)
Brain tumor is one of the most lethal cancers owing to the existence of blood–brain barrier and blood–brain tumor barrier as well as the lack of highly effective brain tumor treatment paradigms. Herein, cyclo(Arg‐Gly‐Asp‐D‐Phe‐Lys(mpa)) decorated biocompatible and photostable conjugated polymer nanoparticles with strong absorption in the second near‐infrared (NIR‐II) window are developed for precise photoacoustic imaging and spatiotemporal photothermal therapy of brain tumor through scalp and skull. Evidenced by the higher efficiency to penetrate scalp and skull for 1064 nm laser as compared to common 808 nm laser, NIR‐II brain‐tumor photothermal therapy is highly effective. In addition, via a real‐time photoacoustic imaging system, the nanoparticles assist clear pinpointing of glioma at a depth of almost 3 mm through scalp and skull with an ultrahigh signal‐to‐background ratio of 90. After spatiotemporal photothermal treatment, the tumor progression is effectively inhibited and the survival spans of mice are significantly extended. This study demonstrates that NIR‐II conjugated polymer nanoparticles are promising for precise imaging and treatment of brain tumors. 相似文献
5.
Tumor‐Targeting Multifunctional Rattle‐Type Theranostic Nanoparticles for MRI/NIRF Bimodal Imaging and Delivery of Hydrophobic Drugs 下载免费PDF全文
Yunfeng Jiao Yangfei Sun Xiaoling Tang Qingguang Ren Wuli Yang 《Small (Weinheim an der Bergstrasse, Germany)》2015,11(16):1962-1974
The development of theranostic systems capable of diagnosis, therapy, and target specificity is considerably significant for accomplishing personalized medicine. Here, a multifunctional rattle‐type nanoparticle (MRTN) as an effective biological bimodal imaging and tumor‐targeting delivery system is fabricated, and an enhanced loading ability of hydrophobic anticancer drug (paclitaxel) is also realized. The rattle structure with hydrophobic Fe3O4 as the inner core and mesoporous silica as the shell is obtained by one‐step templates removal process, and the size of interstitial hollow space can be easily adjusted. The Fe3O4 core with hydrophobic poly(tert‐butyl acrylate) (PTBA) chains on the surface is not only used as a magnetic resonance imaging (MRI) agent, but contributes to improving hydrophobic drug loading amount. Transferrin (Tf) and a near‐infrared fluorescent dye (Cy 7) are successfully modified on the surface of the nanorattle to increase the ability of near‐infrared fluorescence (NIRF) imaging and tumor‐targeting specificity. In vivo studies show the selective accumulation of MRTN in tumor tissues by Tf‐receptor‐mediated endocytosis. More importantly, paclitaxel‐loaded MRTN shows sustained release character and higher cytotoxicity than the free paclitaxel. This theranostic nanoparticle as an effective MRI/NIRF bimodal imaging probe and drug delivery system shows great potential in cancer diagnosis and therapy. 相似文献
6.
Dose‐Dependent Therapeutic Distinction between Active and Passive Targeting Revealed Using Transferrin‐Coated PGMA Nanoparticles 下载免费PDF全文
Ruhani Singh Marck Norret Michael J. House Yuriy Galabura Michael Bradshaw Diwei Ho Robert C. Woodward Timothy G. St. Pierre Igor Luzinov Nicole M. Smith Lee Yong Lim Killugudi Swaminathan Iyer 《Small (Weinheim an der Bergstrasse, Germany)》2016,12(3):351-359
The paradigm of using nanoparticle‐based formulations for drug delivery relies on their enhanced passive accumulation in the tumor interstitium. Nanoparticles with active targeting capabilities attempt to further enhance specific delivery of drugs to the tumors via interaction with overexpressed cellular receptors. Consequently, it is widely accepted that drug delivery using actively targeted nanoparticles maximizes the therapeutic benefit and minimizes the off‐target effects. However, the process of nanoparticle mediated active targeting initially relies on their passive accumulation in tumors. In this article, it is demonstrated that these two tumor‐targeted drug delivery mechanisms are interrelated and dosage dependent. It is reported that at lower doses, actively targeted nanoparticles have distinctly higher efficacy in tumor inhibition than their passively targeted counterparts. However, the enhanced permeability and retention effect of the tumor tissue becomes the dominant factor influencing the efficacy of both passively and actively targeted nanoparticles when they are administered at higher doses. Importantly, it is demonstrated that dosage is a pivotal parameter that needs to be taken into account in the assessment of nanoparticle mediated targeted drug delivery. 相似文献
7.
Senile plaques, the extracellular deposit of amyloid‐β (Aβ) peptides, are one of the neuropathological hallmarks found in Alzheimer's disease (AD) brain. The current method of brain imaging of amyloid plaques based on positron emission tomography (PET) is expensive and invasive with low spatial resolution. Thus, the development of sensitive and nonradiative amyloid‐β (Aβ)‐specific contrast agents is highly important and beneficial to achieve early AD detection, monitor the disease progression, and evaluate the effectiveness of potential AD drugs. Here a neuroprotective dual‐modal nanoprobe developed by integrating highly Aβ‐specific and turn‐on fluorescence cyanine sensors with superparamagnetic iron oxide nanoparticles as an effective near‐infrared imaging (NIRI)/magnetic resonance imaging (MRI) contrast agent for imaging of Aβ species in vivo is reported. This Aβ‐specific probe is found not only nontoxic and noninvasive, but also highly blood brain barrier permeable. It also shows a potent neuroprotective effect against Aβ‐induced toxicities. This nanoprobe is successfully applied for in vivo fluorescence imaging with high sensitivity and selectivity to Aβ species, and MRI with high spatial resolution in an APP/PS1 transgenic mice model. Its potential as a powerful in vivo dual‐modal imaging tool for early detection and diagnosis of AD in humans is affirmed. 相似文献
8.
Bing Guo Jingqin Chen Ningbo Chen Eshu Middha Shidang Xu Yutong Pan Min Wu Ke Li Chengbo Liu Bin Liu 《Advanced materials (Deerfield Beach, Fla.)》2019,31(25)
Exogenous contrast‐agent‐assisted NIR‐II optical‐resolution photoacoustic microscopy imaging (ORPAMI) holds promise to decipher wide‐field 3D biological structures with deep penetration, large signal‐to‐background ratio (SBR), and high maximum imaging depth to depth resolution ratio. Herein, NIR‐II conjugated polymer nanoparticle (CP NP) assisted ORPAMI is reported for pinpointing cerebral and tumor vasculatures. The CP NPs exhibit a large extinction coefficient of 48.1 L g?1 at the absorption maximum of 1161 nm, with an ultrahigh PA sensitivity up to 2 µg mL?1. 3D ORPAMI of wide‐field mice ear allows clear visualization of regular vasculatures with a resolution of 19.2 µm and an SBR of 29.3 dB at the maximal imaging depth of 539 µm. The margin of ear tumor composed of torsional dense vessels among surrounding normal regular vessels can be clearly delineated via 3D angiography. In addition, 3D whole‐cortex cerebral vasculatures with large imaging area (48 mm2), good resolution (25.4 µm), and high SBR (22.3 dB) at a depth up to 1001 µm are clearly resolved through the intact skull. These results are superior to the recently reported 3D NIR‐II fluorescence confocal vascular imaging, which opens up new opportunities for NIR‐II CP‐NP‐assisted ORPAMI in various biomedical applications. 相似文献
9.
10.
11.
12.
Smart‐Dust‐Nanorice for Enhancement of Endogenous Raman Signal,Contrast in Photoacoustic Imaging,and T2‐Shortening in Magnetic Resonance Imaging 下载免费PDF全文
Christoph Pohling Jos L. Campbell Timothy A. Larson Dominique Van de Sompel Jelena Levi Sanjiv S. Gambhir 《Small (Weinheim an der Bergstrasse, Germany)》2018,14(19)
Raman microspectroscopy provides chemo‐selective image contrast, sub‐micrometer resolution, and multiplexing capabilities. However, it suffers from weak signals resulting in image‐acquisition times of up to several hours. Surface‐enhanced Raman scattering (SERS) can dramatically enhance signals of molecules in close vicinity of metallic surfaces and overcome this limitation. Multimodal, SERS‐active nanoparticles are usually labeled with Raman marker molecules, limiting SERS to the coating material. In order to realize multimodal imaging while acquiring the rich endogenous vibronic information of the specimen, a core–shell particle based on “Nanorice”, where a spindle‐shaped iron oxide core is encapsulated by a closed gold shell, is developed. An ultrathin layer of silica prevents agglomeration and unwanted chemical interaction with the specimen. This approach provides Raman signal enhancement due to plasmon resonance effects of the shell while the optical absorption in the near‐infrared spectral region provides contrast in photoacoustic tomography. Finally, T2‐relaxation of a magnetic resonance imaging (MRI) experiment is altered by taking advantage of the iron oxide core. The feasibility for Raman imaging is evaluated by nearfield simulations and experimental studies on the primate cell line COS1. MRI and photoacoustics are demonstrated in agarose phantoms illustrating the promising translational nature of this strategy for clinical applications in radiology. 相似文献
13.
Yuh‐Shyan Tsai Yu‐Hung Chen Pai‐Chiao Cheng Hsin‐Tzu Tsai Ai‐Li Shiau Tzong‐Shin Tzai Chao‐Liang Wu 《Small (Weinheim an der Bergstrasse, Germany)》2013,9(12):2119-2128
Gold nanoparticles (AuNPs) are widely used as carriers or therapeutic agents due to their great biocompatibility and unique physical properties. Transforming growth factor‐beta 1 (TGF‐β1), a member of the cysteine‐knot structural superfamily, plays a pivotal role in many diseases and is known as an immunosuppressive agent that attenuates immune response resulting in tumor growth. The results reported herein reflect strong interactions between TGF‐β1 and the surface of AuNPs when incubated with serum‐containing medium, and demonstrate a time‐ and dose‐dependent pattern. Compared with other serum proteins that can also bind to the AuNP surface, AuNP–TGFβ1 conjugate is a thermodynamically favored compound. Epithelial cells undergo epithelial–mesenchymal transition (EMT) upon treatment with TGF‐β1; however, treatment with AuNPs reverses this effect, as detected by cell morphology and expression levels of EMT markers. TGF‐β1 is found to bind to AuNPs through S–Au bonds by X‐ray photoelectron spectroscopy. Fourier transform infrared spectroscopy is employed to analyze the conformational changes of TGF‐β1 on the surface of AuNPs. The results indicate that TGF‐β1 undergoes significant conformational changes at both secondary and tertiary structural levels after conjugation to the AuNP surface, which results in the deactivation of TGF‐β1 protein. An in vivo experiment also shows that addition of AuNPs attenuates the growth of TGF‐β1‐secreting murine bladder tumor 2 cells in syngeneic C3H/HeN mice, but not in immunocompromised NOD‐SCID mice, and this is associated with an increase in the number of tumor‐infiltrating CD4+ and CD8+ T lymphocytes and a decrease in the number of intrasplenic Foxp3(+) lymphocytes. The findings demonstrate that AuNPs may be a promising agent for modulating tumor immunity through inhibiting immunosuppressive TGF‐β1 signaling. 相似文献
14.
Multifunctional Magnetic Gd3+‐Based Coordination Polymer Nanoparticles: Combination of Magnetic Resonance and Multispectral Optoacoustic Detections for Tumor‐Targeted Imaging in vivo 下载免费PDF全文
Qiao An Jing Liu Meng Yu Jiaxun Wan Dian Li Changchun Wang Chunying Chen Jia Guo 《Small (Weinheim an der Bergstrasse, Germany)》2015,11(42):5675-5686
To overcome traditional barriers in optical imaging and microscopy, optoacoustic‐imaging has been changed to combine the accuracy of spectroscopy with the depth resolution of ultrasound, achieving a novel modality with powerful in vivo imaging. However, magnetic resonance imaging provides better spatial and anatomical resolution. Thus, a single hybrid nanoprobe that allows for simultaneous multimodal imaging is significant not only for cutting edge research in imaging science, but also for accurate clinical diagnosis. A core‐shell‐structured coordination polymer composite microsphere has been designed for in vivo multimodality imaging. It consists of a Fe3O4 nanocluster core, a carbon sandwiched layer, and a carbocyanine‐GdIII (Cy‐GdIII) coordination polymer outer shell (Fe3O4@C@Cy‐GdIII). Folic acid‐conjugated poly(ethylene glycol) chains are embedded within the coordination polymer shell to achieve extended circulation and targeted delivery of probe particles in vivo. Control of Fe3O4 core grain sizes results in optimal r2 relaxivity (224.5 × 10–3 m −1 s‐1) for T2‐weighted magnetic resonance imaging. Cy‐GdIII coordination polymers are also regulated to obtain a maximum 25.1% of Cy ligands and 5.2% of GdIII ions for near‐infrared fluorescence and T1‐weighted magnetic resonance imaging, respectively. The results demonstrate their impressive abilities for targeted, multimodal, and reliable imaging. 相似文献
15.
Traceable Nanoparticles with Dual Targeting and ROS Response for RNAi‐Based Immunochemotherapy of Intracranial Glioblastoma Treatment 下载免费PDF全文
Chenmeng Qiao Jun Yang Qi Shen Ruiyuan Liu Yanhui Li Yuanjie Shi Jingli Chen Yanqin Shen Zuobing Xiao Jie Weng Xin Zhang 《Advanced materials (Deerfield Beach, Fla.)》2018,30(18)
The chemotherapy of glioblastoma is severely hindered by the immunosuppressive tumor microenvironment, especially the tumor growth factor β (TGF‐β), an immunosuppressive cytokine. In this study, it is proposed to employ RNAi‐based immunomodulation to modify the tumor immune microenvironment and improve the effect of chemotherapy. Herein, a nanotheranostic system (Angiopep LipoPCB(Temozolomide+BAP/siTGF‐β), ALBTA) with dual targeting and ROS response is established for intracranial glioblastoma treatment. The traceable nanoparticles exhibit strong siRNA condensation, high drug loading efficiency, good serum stability, and magnetic property. They can efficiently cross the blood–brain barrier and target to glioblastoma cells via receptor‐mediated transcytosis. The zwitterionic lipid (distearoyl phosphoethanol‐amine‐polycarboxybetaine lipid) in ALBTA promotes endosomal/lysosomal escape, and thus enhances the cytotoxicity of temozolomide and improves gene silencing efficiency of siTGF‐β. ALBTA significantly improves the immunosuppressive microenvironment and prolongs the survival time of glioma‐bearing mice. Moreover, ALBTA can be accurately traced by MRI in brain tumors. The study indicates that this immunochemotherapeutic platform can serve as a flexible and powerful synergistic system for treatment with brain tumors as well as other brain diseases in central nervous system. 相似文献
16.
Giant Magnetic Heat Induction of Magnesium‐Doped γ‐Fe2O3 Superparamagnetic Nanoparticles for Completely Killing Tumors 下载免费PDF全文
Jung‐tak Jang Jooyoung Lee Jiyun Seon Eric Ju Minkyu Kim Young Il Kim Min Gyu Kim Yasushi Takemura Ali Syed Arbab Keon Wook Kang Ki Ho Park Sun Ha Paek Seongtae Bae 《Advanced materials (Deerfield Beach, Fla.)》2018,30(6)
Magnetic fluid hyperthermia has been recently considered as a Renaissance of cancer treatment modality due to its remarkably low side effects and high treatment efficacy compared to conventional chemotheraphy or radiotheraphy. However, insufficient AC induction heating power at a biological safe range of AC magnetic field (Happl·fappl < 3.0–5.0 × 109 A m?1 s?1), and highly required biocompatibility of superparamagnetic nanoparticle (SPNP) hyperthermia agents are still remained as critical challenges for successful clinical hyperthermia applications. Here, newly developed highly biocompatible magnesium shallow doped γ‐Fe2O3 (Mg0.13‐γFe2O3) SPNPs with exceptionally high intrinsic loss power (ILP) in a range of 14 nH m2 kg?1, which is an ≈100 times higher than that of commercial Fe3O4 (Feridex, ILP = 0.15 nH m2 kg?1) at Happl·fappl = 1.23 × 109 A m?1 s?1 are reported. The significantly enhanced heat induction characteristics of Mg0.13‐γFe2O3 are primarily due to the dramatically enhanced out‐of‐phase magnetic susceptibility and magnetically tailored AC/DC magnetic softness resulted from the systematically controlled Mg2+ cations distribution and concentrations in octahedral site Fe vacancies of γ‐Fe2O3 instead of well‐known Fe3O4 SPNPs. In vitro and in vivo magnetic hyperthermia studies using Mg0.13‐γFe2O3 nanofluids are conducted to estimate bioavailability and biofeasibility. Mg0.13‐γFe2O3 nanofluids show promising hyperthermia effects to completely kill the tumors. 相似文献
17.
Poly(Vinylpyrollidone)‐ and Selenocysteine‐Modified Bi2Se3 Nanoparticles Enhance Radiotherapy Efficacy in Tumors and Promote Radioprotection in Normal Tissues 下载免费PDF全文
Jiangfeng Du Zhanjun Gu Liang Yan Yuan Yong Xuan Yi Xiao Zhang Jing Liu Renfei Wu Cuicui Ge Chunying Chen Yuliang Zhao 《Advanced materials (Deerfield Beach, Fla.)》2017,29(34)
The development of a new generation of nanoscaled radiosensitizers that can not only enhance radiosensitization of tumor tissues, but also increase radioresistance of healthy tissue is highly desirable, but remains a great challenge. Here, this paper reports a new versatile theranostics based on poly(vinylpyrollidone)‐ and selenocysteine‐modified Bi2Se3 nanoparicles (PVP‐Bi2Se3@Sec NPs) for simultaneously enhancing radiotherapeutic effects and reducing the side‐effects of radiation. The as‐prepared nanoparticles exhibit significantly enhanced free‐radical generation upon X‐ray radiation, and remarkable photothermal effects under 808 nm NIR laser irradiation because of their strong X‐ray attenuation ability and high NIR absorption capability. Moreover, these PVP‐Bi2Se3@Sec NPs are biodegradable. In vivo, part of selenium can be released from NPs and enter the blood circulation system, which can enhance the immune function and reduce the side‐effects of radiation in the whole body. As a consequence, improved superoxide dismutase and glutathione peroxidase activities, promoted secretion of cytokines, increased number of white blood cell, and reduced marrow DNA suppression are found after radiation treatment in vivo. Moreover, there is no significant in vitro and in vivo toxicity of PVP‐Bi2Se3@Sec NPs during the treatment, which demonstrates that PVP‐Bi2Se3@Sec NPs have good biocompatibility. 相似文献
18.
Ambient Aqueous Synthesis of Ultrasmall PEGylated Cu2−xSe Nanoparticles as a Multifunctional Theranostic Agent for Multimodal Imaging Guided Photothermal Therapy of Cancer 下载免费PDF全文
Shaohua Zhang Caixia Sun Jianfeng Zeng Qiao Sun Guanglin Wang Yong Wang Yan Wu Shixue Dou Mingyuan Gao Zhen Li 《Advanced materials (Deerfield Beach, Fla.)》2016,28(40):8927-8936
19.
20.
Detection of β‐Amyloid by Sialic Acid Coated Bovine Serum Albumin Magnetic Nanoparticles in a Mouse Model of Alzheimer's Disease 下载免费PDF全文
Seyedmehdi Hossaini Nasr Hovig Kouyoumdjian Christiane Mallett Sherif Ramadan David C. Zhu Erik M. Shapiro Xuefei Huang 《Small (Weinheim an der Bergstrasse, Germany)》2018,14(3)
The accumulation and formation of β‐amyloid (Aβ) plaques in the brain are distinctive pathological hallmarks of Alzheimer's disease (AD). Designing nanoparticle (NP) contrast agents capable of binding with Aβ highly selectively can potentially facilitate early detection of AD. However, a significant obstacle is the blood brain barrier (BBB), which can preclude the entrance of NPs into the brain for Aβ binding. In this work, bovine serum albumin (BSA) coated NPs are decorated with sialic acid (NP‐BSAx‐Sia) to overcome the challenges in Aβ imaging in vivo. The NP‐BSAx‐Sia is biocompatible with high magnetic relaxivities, suggesting that they are suitable contrast agents for magnetic resonance imaging (MRI). The NP‐BSAx‐Sia binds with Aβ in a sialic acid dependent manner with high selectivities toward Aβ deposited on brains and cross the BBB in an in vitro model. The abilities of these NPs to detect Aβ in vivo in human AD transgenic mice by MRI are evaluated without the need to coinject mannitol to increase BBB permeability. T2*‐weighted MRI shows that Aβ plaques in mouse brains can be detected as aided by NP‐BSAx‐Sia, which is confirmed by histological analysis. Thus, NP‐BSAx‐Sia is a promising new tool for noninvasive in vivo detection of Aβ plaques. 相似文献