首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study of circulating tumor cells (CTCs) offers pathways to develop new diagnostic and prognostic biomarkers that benefit cancer treatments. In order to fully exploit and interpret the information provided by CTCs, the development of a platform is reported that integrates acoustics and microfluidics to isolate rare CTCs from peripheral blood in high throughput while preserving their structural, biological, and functional integrity. Cancer cells are first isolated from leukocytes with a throughput of 7.5 mL h−1, achieving a recovery rate of at least 86% while maintaining the cells' ability to proliferate. High‐throughput acoustic separation enables statistical analysis of isolated CTCs from prostate cancer patients to be performed to determine their size distribution and phenotypic heterogeneity for a range of biomarkers, including the visualization of CTCs with a loss of expression for the prostate specific membrane antigen. The method also enables the isolation of even rarer, but clinically important, CTC clusters.  相似文献   

2.
Circulating tumor cells (CTCs) offer tremendous potential for the detection and characterization of cancer. A key challenge for their isolation and subsequent analysis is the extreme rarity of these cells in circulation. Here, a novel label‐free method is described to enrich viable CTCs directly from whole blood based on their distinct deformability relative to hematological cells. This mechanism leverages the deformation of single cells through tapered micrometer scale constrictions using oscillatory flow in order to generate a ratcheting effect that produces distinct flow paths for CTCs, leukocytes, and erythrocytes. A label‐free separation of circulating tumor cells from whole blood is demonstrated, where target cells can be separated from background cells based on deformability despite their nearly identical size. In doping experiments, this microfluidic device is able to capture >90% of cancer cells from unprocessed whole blood to achieve 104‐fold enrichment of target cells relative to leukocytes. In patients with metastatic castration‐resistant prostate cancer, where CTCs are not significantly larger than leukocytes, CTCs can be captured based on deformability at 25× greater yield than with the conventional CellSearch system. Finally, the CTCs separated using this approach are collected in suspension and are available for downstream molecular characterization.  相似文献   

3.
Matching the scale of microfluidic flow systems with that of microelectronic chips for realizing monolithically integrated systems still needs to be accomplished. However, this is appealing only if such re‐scaling does not compromise the fluidic throughput. This is related to the fact that the cost of microelectronic circuits primarily depends on the layout footprint, while the performance of many microfluidic systems, like flow cytometers, is measured by the throughput. The simple operation of inertial particle focusing makes it a promising technique for use in such integrated flow cytometer applications, however, microfluidic footprints demonstrated so far preclude monolithic integration. Here, the scaling limits of throughput‐per‐footprint (TPFP) in using inertial focusing are explored by studying the interplay between theory, the effect of channel Reynolds numbers up to 1500 on focusing, the entry length for the laminar flow to develop, and pressure resistance of the microchannels. Inertial particle focusing is demonstrated with a TPFP up to 0.3 L/(min cm2) in high aspect‐ratio rectangular microfluidic channels that are readily fabricated with a post‐CMOS integratable process, suggesting at least a 100‐fold improvement compared to previously demonstrated techniques. Not only can this be an enabling technology for realizing cost‐effective monolithically integrated flow cytometry devices, but the methodology represented here can also open perspectives for miniaturization of many biomedical microfluidic applications requiring monolithic integration with microelectronics without compromising the throughput.  相似文献   

4.
A major challenge to scale up a microfluidic magnetic separator for extracorporeal blood cleansing applications is to overcome low magnetic drag velocity caused by viscous blood components interfering with magnetophoresis. Therefore, there is an unmet need to develop an effective method to position magnetic particles to the area of augmented magnetic flux density gradients while retaining clinically applicable throughput. Here, a magnetophoretic cell separation device, integrated with slanted ridge‐arrays in a microfluidic channel, is reported. The slanted ridges patterned in the microfluidic channels generate spiral flows along the microfluidic channel. The cells bound with magnetic particles follow trajectories of the spiral streamlines and are repeatedly transferred in a transverse direction toward the area adjacent to a ferromagnetic nickel structure, where they are exposed to a highly augmented magnetic force of 7.68 µN that is much greater than the force (0.35 pN) at the side of the channel furthest from the nickel structure. With this approach, 91.68% ± 2.18% of Escherichia coli (E. coli) bound with magnetic nanoparticles are successfully separated from undiluted whole blood at a flow rate of 0.6 mL h?1 in a single microfluidic channel, whereas only 23.98% ± 6.59% of E. coli are depleted in the conventional microfluidic device.  相似文献   

5.
Liposomes represent a leading class of nanoparticles for drug delivery. While a variety of techniques for liposome synthesis have been reported that take advantage of microfluidic flow elements to achieve precise control over the size and polydispersity of nanoscale liposomes, with important implications for nanomedicine applications, these methods suffer from extremely limited throughput, making them impractical for large‐scale nanoparticle synthesis. High aspect ratio microfluidic vertical flow focusing is investigated here as a new approach to overcoming the throughput limits of established microfluidic nanoparticle synthesis techniques. Here the vertical flow focusing technique is utilized to generate populations of small, unilamellar, and nearly monodisperse liposomal nanoparticles with exceptionally high production rates and remarkable sample homogeneity. By leveraging this platform, liposomes with modal diameters ranging from 80 to 200 nm are prepared at production rates as high as 1.6 mg min−1 in a simple flow‐through process.  相似文献   

6.
Circulating tumor cells (CTCs), though exceedingly rare in the blood, are nonetheless becoming increasingly important in cancer diagnostics. Despite this keen interest and the growing number of potential clinical applications, there has been limited success in developing a CTC isolation platform that simultaneously optimizes recovery rates, purity, and cell compatibility. Herein, a novel tracheal carina‐inspired bifurcated (TRAB) microfilter system is reported, which uses an optimal filter gap size satisfying both 100% theoretical recovery rate and purity, as determined by biomechanical analysis and fluid–structure interaction (FSI) simulations. Biomechanical properties are also used to clearly discriminate between cancer cells and leukocytes, whereby cancer cells are selectively bound to melamine microbeads, which increase the size and stiffness of these cells. Nanoindentation experiments are conducted to measure the stiffness of leukocytes as compared to the microbead‐conjugated cancer cells, with these parameters then being used in FSI analyses to optimize the filter gap size. The simulation results show that given a flow rate of 100 μL min?1, an 8 μm filter gap optimizes the recovery rate and purity. MCF‐7 breast cancer cells with solid microbeads are spiked into 3 mL of whole blood and, by using this flow rate along with the optimized microfilter dimensions, the cell mixture passes through the TRAB filter, which achieves a recovery rate of 93% and purity of 59%. Regarding cell compatibility, it is verified that the isolation procedure does not adversely affect cell viability, thus also confirming that the re‐collected cancer cells can be cultured for up to 8 days. This work demonstrates a CTC isolation technology platform that optimizes high recovery rates and cell purity while also providing a framework for functional cell studies, potentially enabling even more sensitive and specific cancer diagnostics.  相似文献   

7.
Cancer remains the leading cause of death worldwide despite the enormous efforts that are made in the development of cancer biology and anticancer therapeutic treatment. Furthermore, recent studies in oncology have focused on the complex cancer metastatic process as metastatic disease contributes to more than 90% of tumor‐related death. In the metastatic process, isolation and analysis of circulating tumor cells (CTCs) play a vital role in diagnosis and prognosis of cancer patients at an early stage. To obtain relevant information on cancer metastasis and progression from CTCs, reliable approaches are required for CTC detection and isolation. Additionally, experimental platforms mimicking the tumor microenvironment in vitro give a better understanding of the metastatic microenvironment and antimetastatic drugs' screening. With the advancement of microfabrication and rapid prototyping, microfluidic techniques are now increasingly being exploited to study cancer metastasis as they allow precise control of fluids in small volume and rapid sample processing at relatively low cost and with high sensitivity. Recent advancements in microfluidic platforms utilized in various methods for CTCs' isolation and tumor models recapitulating the metastatic microenvironment (tumor‐on‐a‐chip) are comprehensively reviewed. Future perspectives on microfluidics for cancer metastasis are proposed.  相似文献   

8.
Extracellular vesicles (EVs) are emerging as a potential diagnostic test for cancer. Owing to the recent advances in microfluidics, on‐chip EV isolation is showing promise with respect to improved recovery rates, smaller necessary sample volumes, and shorter processing times than ultracentrifugation. Immunoaffinity‐based microfluidic EV isolation using anti‐CD63 is widely used; however, anti‐CD63 is not specific to cancer‐EVs, and some cancers secrete EVs with low expression of CD63. Alternatively, phosphatidylserine (PS), usually expressed in the inner leaflet of the lipid bilayer of the cells, is shown to be expressed on the outer surface of cancer‐associated EVs. A new exosome isolation microfluidic device (newExoChip), conjugated with a PS‐specific protein, to isolate cancer‐associated exosomes from plasma, is presented. The device achieves 90% capture efficiency for cancer cell exosomes compared to 38% for healthy exosomes and isolates 35% more A549‐derived exosomes than an anti‐CD63‐conjugated device. Immobilized exosomes are then easily released using Ca2+ chelation. The recovered exosomes from clinical samples are characterized by electron microscopy and western‐blot analysis, revealing exosomal shapes and exosomal protein expressions. The newExoChip facilitates the isolation of a specific subset of exosomes, allowing the exploration of the undiscovered roles of exosomes in cancer progression and metastasis.  相似文献   

9.
This study establishes a novel microfluidic platform for rapid encapsulation of cells at high densities in photocrosslinkable microspherical hydrogels including poly(ethylene glycol)‐diacrylate, poly(ethylene glycol)‐fibrinogen, and gelatin methacrylate. Cell‐laden hydrogel microspheres are advantageous for many applications from drug screening to regenerative medicine. Employing microfluidic systems is considered the most efficient method for scale‐up production of uniform microspheres. However, existing platforms have been constrained by traditional microfabrication techniques for device fabrication, restricting microsphere diameter to below 200 µm and making iterative design changes time‐consuming and costly. Using a new molding technique, the microfluidic device employs a modified T‐junction design with readily adjustable channel sizes, enabling production of highly uniform microspheres with cell densities (10–60 million cells mL?1) and a wide range of diameters (300–1100 µm), which are critical for realizing downstream applications, through rapid photocrosslinking (≈1 s per microsphere). Multiple cell types are encapsulated at rates of up to 1 million cells per min, are evenly distributed throughout the microspheres, and maintain high viability and appropriate cellular activities in long‐term culture. This microfluidic encapsulation platform is a valuable and readily adoptable tool for numerous applications, including supporting injectable cell therapy, bioreactor‐based cell expansion and differentiation, and high throughput tissue sphere‐based drug testing assays.  相似文献   

10.
The microfluidic isolation of target cells using adhesion‐based surface capture has been widely explored for biology and medicine. However, high‐throughput processing can be challenging due to interfacial limitations such as transport, reaction, and non‐specific fouling. Here, it is shown that antibody‐functionalized capture surfaces with discontinuous permeability enable efficient target cell capture at high flow rates by decreasing fouling. Experimental characterization and theoretical modeling reveal that “wall effects” affect cell–surface interactions and promote excess surface accumulation. These issues are partially circumvented by reducing the transport and deposition of cells near the channel walls. Optimized microfluidic devices can be operated at higher cell concentrations with significant improvements in throughput.  相似文献   

11.
Microfluidic fluorescence‐activated cell sorters (μFACS) have attracted considerable interest because of their ability to identify and separate cells in inexpensive and biosafe ways. Here a high‐performance μFACS is presented by integrating a standing surface acoustic wave (SSAW)‐based, 3D cell‐focusing unit, an in‐plane fluorescent detection unit, and an SSAW‐based cell‐deflection unit on a single chip. Without using sheath flow or precise flow rate control, the SSAW‐based cell‐focusing technique can focus cells into a single file at a designated position. The tight focusing of cells enables an in‐plane‐integrated optical detection system to accurately distinguish individual cells of interest. In the acoustic‐based cell‐deflection unit, a focused interdigital transducer design is utilized to deflect cells from the focused stream within a minimized area, resulting in a high‐throughput sorting ability. Each unit is experimentally characterized, respectively, and the integrated SSAW‐based FACS is used to sort mammalian cells (HeLa) at different throughputs. A sorting purity of greater than 90% is achieved at a throughput of 2500 events s?1. The SSAW‐based FACS is efficient, fast, biosafe, biocompatible and has a small footprint, making it a competitive alternative to more expensive, bulkier traditional FACS.  相似文献   

12.
A surface enhanced Raman scattering (SERS)‐assisted 3D barcode chip has been developed for high‐throughput biosensing. The 3D barcode is realized through joint 2D spatial encoding with the Raman spectroscopic encoding, which stores the SERS fingerprint information in the format of a 2D array. Here, the concept of SERS‐assisted 3D barcode is demonstrated through multiplex immunoassay, where simultaneous detection of multiple targets in different samples has been achieved using a microfluidic platform. First, multiple proteins in different samples are spatially separated using a microfluidic patterned antibody barcode substrate, forming a 2D hybridization array. Then the SERS probes are used to identify and quantify the proteins. As different SERS probes are labeled with different Raman reporters, they could be employed as “SERS tags” to incorporate spectroscopic information into the 3D barcode. In this 3D barcode, the 2D spatial information helps to differentiate the samples and targets while the SERS information allows quantitative multiplex detection. It is found that the SERS‐assisted 3D barcode chip can not only accomplish one‐step multiplex detection within 30 min but also achieve an ultrasensitivity down to 10 fg mL?1 (≈70 aM), which is expected to provide a promising tool for high‐throughput biomedical applications.  相似文献   

13.
Downstream studies of circulating tumor cells (CTCs), which may provide indicative evaluation information for therapeutic efficacy, cancer metastases, and cancer prognosis, are seriously hindered by the poor purity of enriched CTCs as large amounts of interfering leukocytes still nonspecifically bind to the isolation platform. In this work, biomimetic immunomagnetic nanoparticles (BIMNs) with the following features are designed: i) the leukocyte membrane camouflage, which could greatly reduce homologous leukocyte interaction and actualize high‐purity CTCs isolation, is easily extracted by graphene nanosheets; ii) facile antibody conjugation can be achieved through the “insertion” of biotinylated lipid molecules into leukocyte‐membrane‐coated nanoparticles and streptavidin conjunction; iii) layer‐by‐layer assembly techniques could integrate high‐magnetization Fe3O4 nanoparticles and graphene nanosheets efficiently. Consequently, the resulting BIMNs achieve a capture efficiency above 85.0% and CTCs purity higher than 94.4% from 1 mL blood with 20–200 CTCs after 2 min incubation. Besides, 98.0% of the isolated CTCs remain viable and can be directly cultured in vitro. Moreover, application of the BIMNs to cancer patients' peripheral blood shows good reproducibility (mean relative standard deviation 8.7 ± 5.6%). All results above suggest that the novel biomimetic nanoplatform may serve as a promising tool for CTCs enrichment and detection from clinical samples.  相似文献   

14.
Carbon nanotube (CNT)‐based filters have the potential to revolutionize water treatment because of their high capacity and fast kinetics in sorption of organic, inorganic, and biological pollutants. To date, CNT filters either rely on CNTs dispersed in liquids, which are difficult to recover and cause safety concerns, or on CNT buckypaper, which offers high efficiency, but suffers from an intrinsic trade‐off between filter permeability and capacity. Here, a new approach is presented that bypasses this trade‐off and achieves buckypaper‐like efficiency combined with filter‐column‐like permeability and capacity. For this, CNTs are first assembled into porous microspheres and then are packed into microfluidic column filters. These microcolumns exhibit large flow‐through filtration efficiencies, while maintaining membrane permeabilities an order of magnitude larger then CNT buckypaper and specific permeabilities double that of activated carbon for similar flowrates (232 000 L m?2 h?1 bar?1, 1.23 × 10?12 m2). Moreover, in a test to remove sodium dodecyl sulfate (SDS) from water, these microstructured CNT columns outperform activated carbon columns. This improved filtration efficiency and permeability is an important step toward a broader implementation of CNT‐based filtration devices.  相似文献   

15.
Solar‐driven evaporation is a promising way of using abundant solar energy for desalinating polluted water or seawater, which addresses the challenge of global fresh water scarcity. Cost‐effectiveness and durability are key factors for practical solar‐driven evaporation technology. The present cutting‐edge techniques mostly rely on costly and complex fabricated nanomaterials, such as metallic nanoparticles, nanotubes, nanoporous hydrogels, graphene, and graphene derivatives. Herein, a black nylon fiber (BNF) flocking board with a vertically aligned array prepared via a convenient electrostatic flocking technique is reported, presenting an extremely high solar absorbance (99.6%), a water self‐supply capability, and a unique salt self‐dissolution capability for seawater desalination. Through a carefully designed 3D structure, a plug‐in‐type BNF flocking board steam generator realizes a high evaporation rate of 2.09 kg m?2 h?1 under 1 kW m?2 solar illumination, well beyond its corresponding upper limit of 1.50 kg m?2 h?1 (assuming 100% solar energy is being used for evaporation latent heat). With the advantages of high‐efficiency fabrication, cost‐effectiveness, high evaporation rate, and high endurance in seawater desalination, this 3D design provides a new strategy to build up an economic, sustainable, and rapid solar‐driven steam generation system.  相似文献   

16.
A circulating tumor cell (CTC) selection microfluidic device was integrated to an electrokinetic enrichment device for preconcentrating CTCs directly from whole blood to allow for the detection of mutations contained within the genomic DNA of the CTCs. Molecular profiling of CTCs can provide important clinical information that cannot be garnered simply by enumerating the selected CTCs. We evaluated our approach using SW620 and HT29 cells (colorectal cancer cell lines) seeded into whole blood as a model system. Because SW620 and HT29 cells overexpress the integral membrane protein EpCAM, they could be immunospecifically selected using a microfluidic device containing anti-EpCAM antibodies immobilized to the walls of a selection bed. The microfluidic device was operated at an optimized flow rate of 2 mm s(-1), which allowed for the ability to process 1 mL of whole blood in <40 min. The selected CTCs were then enzymatically released from the antibody selection surface and hydrodynamically transported through a pair of Pt electrodes for conductivity-based enumeration. The efficiency of CTC selection was found to be 96% ± 4%. Following enumeration, the CTCs were hydrodynamically transported at a flow rate of 1 μL min(-1) to an on-chip electromanipulation unit, where they were electrophoretically withdrawn from the bulk hydrodynamic flow and directed into a receiving reservoir. Using an electric field of 100 V cm(-1), the negatively charged CTCs were enriched into an anodic receiving reservoir to a final volume of 2 μL, providing an enrichment factor of 500. The collected CTCs could then be searched for point mutations using a PCR/LDR/capillary electrophoresis assay. The DNA extracted from the CTCs was subjected to a primary polymerase chain reaction (PCR) with the amplicons used for a ligase detection reaction (LDR) to probe for KRAS oncogenic point mutations. Point mutations in codon 12 of the KRAS gene were successfully detected in the SW620 CTCs for samples containing <10 CTCs in 1 mL of whole blood. However, the HT29 cells did not contain these mutations, consistent with their known genotype.  相似文献   

17.
Solar steaming has emerged as a promising green technology that can address the global issue of scarcity of clean water. However, developing high‐performance, cost‐effective, and manufacturable solar‐steaming materials, and portable solar steaming‐collection systems for individuals remains a great challenge. Here, a one‐step, low‐cost, and mass‐producible synthesis of polypyrrole (PPy) origami‐based photothermal materials, and an original portable low‐pressure controlled solar steaming‐collection unisystem, offering synergetic high rates in both water evaporation and steam collection, are reported. Due to enhanced areas for vapor dissipation, the PPy origami improves the water evaporation rate by at least 71% to 2.12 kg m?2 h?1 from that of a planar structure and exhibits a solar–thermal energy conversion efficiency of 91.5% under 1 Sun. When further controlling the pressure to ≈0.17 atm in the steaming‐collection unisystem, the water collection rate improves by up to 52% systematically and dramatically. Although partial energy is utilized toward obtaining low‐pressure, evaluations show that the overall energy efficiency is improved remarkably in the low‐pressure system compared to that in ambient pressure. Furthermore, the device demonstrates effective decontamination of heavy metals, bacteria, and desalination. This work can inspire new paradigms toward developing high‐performance solar steaming technologies for individuals and households.  相似文献   

18.
There is a need for intraoperative imaging technologies to guide breast‐conserving surgeries and to reduce the high rates of re‐excision for patients in which residual tumor is found at the surgical margins during postoperative pathology analyses. Feasibility studies have shown that utilizing topically applied surface‐enhanced Raman scattering (SERS) nanoparticles (NPs), in conjunction with the ratiometric imaging of targeted versus untargeted NPs, enables the rapid visualization of multiple cell‐surface biomarkers of cancer that are overexpressed at the surfaces of freshly excised breast tissues. In order to reliably and rapidly perform multiplexed Raman‐encoded molecular imaging of large numbers of biomarkers (with five or more NP flavors), an enhanced staining method has been developed in which tissue surfaces are cyclically dipped into an NP‐staining solution and subjected to high‐frequency mechanical vibration. This dipping and mechanical vibration (DMV) method promotes the convection of the SERS NPs at fresh tissue surfaces, which accelerates their binding to their respective biomarker targets. By utilizing a custom‐developed device for automated DMV staining, this study demonstrates the ability to simultaneously image four cell‐surface biomarkers of cancer at the surfaces of fresh human breast tissues with a mixture of five flavors of SERS NPs (four targeted and one untargeted control) topically applied for 5 min and imaged at a spatial resolution of 0.5 mm and a raster‐scanned imaging rate of >5 cm2 min?1.  相似文献   

19.
Solar‐thermal water evaporation, as a promising method for clean water production, has attracted increasing attention. However, solar water evaporators that exhibit both high water vapor generation ability and anti‐oil‐fouling ability have not been reported. Here, a unique metal–organic‐framework‐based hierarchical structure, referred to as MOF‐based hierarchical structure (MHS), is rationally designed and prepared, which simultaneously displays a high solar absorption and a superhydrophilic and underwater superoleophobic surface property. As a proof‐of‐concept application, a device prepared from the MHS can achieve a high solar‐thermal water evaporation rate of 1.50 kg m?2 h?1 under 1 sun illumination. Importantly, the MHS also possesses an excellent anti‐oil‐fouling property, ensuring its superior water evaporation performance even in oil‐contaminated water. The high solar‐thermal water evaporation rate and anti‐oil‐fouling property make the MHS a promising material for the solar‐thermal water production.  相似文献   

20.
Circulating tumor cells (CTCs) have attracted considerable attention as promising markers for diagnosing and monitoring the cancer status. Despite many technological advances in isolating CTCs, the capture efficiency and purity still remain challenges that limit clinical practice. Here, the construction of “nanotentacle”‐structured magnetic particles using M13‐bacteriophage and their application for the efficient capturing of CTCs is demonstrated. The M13‐bacteriophage to magnetic particles followed by modification with PEG is conjugated, and further tethered monoclonal antibodies against the epidermal receptor 2 (HER2). The use of nanotentacle‐structured magnetic particles results in a high capture purity (>45%) and efficiency (>90%), even for a smaller number of cancer cells (≈25 cells) in whole blood. Furthermore, the cancer cells captured are shown to maintain a viability of greater than 84%. The approach can be effectively used for capturing CTCs with high efficiency and purity for the diagnosis and monitoring of cancer status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号