首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The extensive use of gold nanoparticles (AuNPs) in nanomedicine, especially for intracellular imaging, photothermal therapy, and drug delivery, has necessitated the study of how functionalized AuNPs engage with living biological interfaces like the mammalian cell. Nanoparticle size, shape, surface charge, and surface functionality can affect the accumulation of functionalized AuNPs in cells. Confocal microscopy, flow cytometry, and inductively coupled plasma mass spectrometry demonstrate that CaSki cells, a human cervical cancer cell line, internalize AuNPs functionalized with hairpin, single stranded, and double stranded DNA differently. Surface charge and DNA conformation are shown to have no effect on the cell‐nanoparticle interaction. CaSki cells accumulate small DNA‐AuNPs in greater quantities than large DNA‐AuNPs, demonstrating that size is the major contributor to cellular uptake properties. These data suggest that DNA‐AuNPs can be easily tailored through modulation of size to design functional AuNPs with optimal cellular uptake properties and enhanced performance in nanomedicine applications.  相似文献   

2.
The cellular internalization of oligonucleotide-modified nanoparticles is investigated. Uptake is dependent on the density of the oligonucleotide loading on the surface of the particles, where higher densities lead to greater uptake. Densely functionalized nanoparticles adsorb a large number of proteins on the nanoparticle surface. Nanoparticle uptake is greatest where a large number of proteins are associated with the particle.  相似文献   

3.
Gold nanoparticles (AuNPs) covered with mixtures of immiscible ligands present potentially anisotropic surfaces that can modulate their interactions at complex nano–bio interfaces. Mixed, self‐assembled, monolayer (SAM)‐protected AuNPs, prepared with incompatible hydrocarbon and fluorocarbon amphiphilic ligands, are used here to probe the molecular basis of surface phase separation and disclose the role of fluorinated ligands on the interaction with lipid model membranes and cells, by integrating in silico and experimental approaches. These results indicate that the presence of fluorinated amphiphilic ligands enhances the membrane binding ability and cellular uptake of gold nanoparticles with respect to those coated only with hydrogenated amphiphilic ligands. For mixed monolayers, computational results suggest that ligand phase separation occurs on the gold surface, and the resulting anisotropy affects the number of contacts and adhesion energies with a membrane bilayer. This reflects in a diverse membrane interaction for NPs with different surface morphologies, as determined by surface plasmon resonance, as well as differential effects on cells, as observed by flow cytometry and confocal microscopy. Overall, limited changes in monolayer features can significantly affect NP surface interfacial properties, which, in turn, affect the interaction of SAM‐AuNPs with cellular membranes and subsequent effects on cells.  相似文献   

4.
A new generation of nanocarriers, logic‐embedded vectors (LEVs), is endowed with the ability to localize components at multiple intracellular sites, thus creating an opportunity for synergistic control of redundant or dual‐hit pathways. LEV encoding elements include size, shape, charge, and surface chemistry. In this study, LEVs consist of porous silicon nanocarriers, programmed for cellular uptake and trafficking along the endosomal pathway, and surface‐tailored iron oxide nanoparticles, programmed for endosomal sorting and partitioning of particles into unique cellular locations. In the presence of persistent endosomal localization of silicon nanocarriers, amine‐functionalized nanoparticles are sorted into multiple vesicular bodies that form novel membrane‐bound compartments compatible with cellular secretion, while chitosan‐coated nanoparticles escape from endosomes and enter the cytosol. Encapsulation within the porous silicon matrix protects these nanoparticle surface‐tailored properties, and enhances endosomal escape of chitosan‐coated nanoparticles. Thus, LEVs provide a mechanism for shielded transport of nanoparticles to the lesion, cellular manipulation at multiple levels, and a means for targeting both within and between cells.  相似文献   

5.
A critical factor for controlling serum albumin binding is surface hydrophobicity, which in turn decreases the cellular uptake of gold nanoparticles. Hydrophobic nanoparticles bind albumin more tightly, inhibiting particle uptake, with a direct correlation observed between uptake and surface hydrophobicity.  相似文献   

6.
The advantage of polymeric drug carriers lies in the uptake of the polymer nanoparticles by cancer cells before they release the drug, thereby reducing its toxic effects on healthy cells. A poly(gamma-glutamic acid)-b-poly(epsilon-caprolactone)-b-poly(gamma-glutamic acid) block copolymer was synthesized to encapsulate the anti-cancer drug doxorubicin in the treatment of wild type human breast cancer cells (MCF-7/WT). This pH-controllable carrier is negatively-charged in the presence of healthy tissues leading to lower cellular uptake. On the other hand, it becomes more hydrophobic in the acidic environment of cancer tissues, increasing its cellular uptake through the lipid bilayer. The block copolymer was characterized using Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, differential scanning calorimetry and dynamic light scattering. The micelles formed at a critical concentration range of 62-130 microg/mL depending on the composition of poly(gamma-glutamic acid) and poly(epsilon-caprolactone) chains. The nano-sized micelles were found to have pH-dependent sizes in the range of 90-200 nm. The role of poly(gamma-glutamic acid) was to increase the hydrophilicity and decrease the particle size of the copolymer. The structures of micelles that were more compact and less anionic showed better stability in plasma. It was found that the drug loading content and drug loading efficiency were 12.14% and 97.22% respectively. The copolymer showed shrinking and aggregation at low pH which led to a slower drug release. These nano-sized micelles showed potential as effective drug delivery carriers for doxorubicin because of its accumulation and slow release inside the MCF-7/WT cells.  相似文献   

7.
Chen L  Mccrate JM  Lee JC  Li H 《Nanotechnology》2011,22(10):105708
The objective of this study is to evaluate the effect of hydroxyapatite (HAP) nanoparticles with different surface charges on the cellular uptake behavior and in vitro cell viability and proliferation of MC3T3-E1 cell lines (osteoblast). The nanoparticles' surface charge was varied by surface modification with two carboxylic acids: 12-aminododecanoic acid (positive) and dodecanedioic acid (negative). The untreated HAP nanoparticles and dodecanoic acid modified HAP nanoparticles (neutral) were used as the control. X-ray diffraction (XRD) revealed that surface modifications by the three carboxylic acids did not change the crystal structure of HAP nanoparticles; Fourier transform infrared spectroscopy (FT-IR) confirmed the adsorption and binding of the carboxylic acids on the HAP nanoparticles' surfaces; and zeta potential measurement confirmed that the chemicals successfully modified the surface charge of HAP nanoparticles in water based solution. Transmission electron microscopy (TEM) images showed that positively charged, negatively charged and untreated HAP nanoparticles, with similar size and shape, all penetrated into the cells and cells had more uptake of HAP nanoparticles with positive charge compared to those with negative charge, which might be attributed to the attractive or repulsive interaction between the negatively charged cell membrane and positively/negatively charged HAP nanoparticles. The neutral HAP nanoparticles could not penetrate the cell membrane due to their larger size. MTT assay and LDH assay results indicated that as compared with the polystyrene control, greater cell viability and cell proliferation were measured on MC3T3-E1 cells treated with the three kinds of HAP nanoparticles (neutral, positive, and untreated), among which positively charged HAP nanoparticles showed the strongest improvement for cell viability and cell proliferation. In summary, the surface charge of HAP nanoparticles can be modified to influence the cellular uptake of HAP nanoparticles and the different uptake also influences the behavior of cells. These in vitro results may also provide useful information for investigations of HAP nanoparticle applications in gene delivery and intracellular drug delivery.  相似文献   

8.
A new generation of nanocarriers, logic-embedded vectors (LEVs), is endowed with the ability to localize components at multiple intracellular sites, thus creating an opportunity for synergistic control of redundant or dual-hit pathways. LEV encoding elements include size, shape, charge, and surface chemistry. In this study, LEVs consist of porous silicon nanocarriers, programmed for cellular uptake and trafficking along the endosomal pathway, and surface-tailored iron oxide nanoparticles, programmed for endosomal sorting and partitioning of particles into unique cellular locations. In the presence of persistent endosomal localization of silicon nanocarriers, amine-functionalized nanoparticles are sorted into multiple vesicular bodies that form novel membrane-bound compartments compatible with cellular secretion, while chitosan-coated nanoparticles escape from endosomes and enter the cytosol. Encapsulation within the porous silicon matrix protects these nanoparticle surface-tailored properties, and enhances endosomal escape of chitosan-coated nanoparticles. Thus, LEVs provide a mechanism for shielded transport of nanoparticles to the lesion, cellular manipulation at multiple levels, and a means for targeting both within and between cells.  相似文献   

9.
The interplay of physical and chemical properties at the nanometer scale provides porous nanoparticles with unique sorption and interaction capabilities. These properties have aroused great interest toward this class of materials for application ranging from chemical and biological sensing to separation and drug delivery. However, so far the preferential uptake of different components of mixed solvents by porous nanoparticles is not measured due to a lack of methods capable of detecting the resulting change in physical properties. Here, a new method, nanomechanical mass correlation spectroscopy, is used to reveal an unexpected dependence of the effective mass density of porous metal–organic framework (MOF) nanoparticles on the chemistry of the solvent system and on the chemical functionalization of the MOF's internal surface. Interestingly, the pore size of the nanoparticles is much too large for the exclusion of small solvent molecules by steric hindrance. The variation of effective density of the nanoparticles with the solvent composition indicates that a complex solvent environment can form within or around the nanoparticles, which may substantially differ from the solvent composition.  相似文献   

10.
Objective: Paclitaxel-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles incorporated with galactose-carrying polymer poly(vinyl benzyllactonamide) (PVLA) were prepared to facilitate the hepatocyte cell targeted delivery of paclitaxel via ligand-receptor mediated endocytosis. The factors impacting nanoparticle properties, drug release and cellular uptake efficiency were evaluated in vitro.

Method: Paclitaxel-loaded nanoparticles incorporated with PVLA were prepared by emulsion solvent evaporation method with polyvinyl alcohol (PVA) as co-emulsifier. The presence of PVLA on the particle surface was investigated through the change of ζ potential and surface hydrophobicity. Cellular uptake and cytotoxic activity, involving factors concerned with them, were evaluated by HepG2 cells in vitro.

Results: The presence of PVLA led to the increase of ζ potential, reduction of the particle surface hydrophobicity, slight promotion of paclitaxel encapsulation efficiency and more homogeneous particle size, but excessive PVLA accelerated the burst release. With enhanced attachment and cellular uptake efficiency, the PVLA incorporated nanoparticles exhibited significant cytotoxicity to HepG2 cells, and particles with higher PVLA-to-PLGA ratio, although had larger size and almost the same cellular uptake efficiency, performed much higher cytotoxic activity due to the larger drug capacity and faster release rate.  相似文献   

11.
The biological properties of spherical nucleic acids (SNAs) are largely independent of nanoparticle core identity but significantly affected by oligonucleotide surface density. Additionally, the payload-to-carrier (i.e., DNA-to-nanoparticle) mass ratio of SNAs is inversely proportional to core size. While SNAs with many core types and sizes have been developed, all in vivo analyses of SNA behavior have been limited to cores >10 nm in diameter. However, “ultrasmall” nanoparticle constructs (<10 nm diameter) can exhibit increased payload-to-carrier ratios, reduced liver accumulation, renal clearance, and enhanced tumor infiltration. Therefore, we hypothesized that SNAs with ultrasmall cores exhibit SNA-like properties, but with in vivo behavior akin to traditional ultrasmall nanoparticles. To investigate, we compared the behavior of SNAs with 1.4-nm Au102 nanocluster cores (AuNC-SNAs) and SNAs with 10-nm gold nanoparticle cores (AuNP-SNAs). Significantly, AuNC-SNAs possess SNA-like properties (e.g., high cellular uptake, low cytotoxicity) but show distinct in vivo behavior. When intravenously injected in mice, AuNC-SNAs display prolonged blood circulation, lower liver accumulation, and higher tumor accumulation than AuNP-SNAs. Thus, SNA-like properties persist at the sub-10-nm length scale and oligonucleotide arrangement and surface density are responsible for the biological properties of SNAs. This work has implications for the design of new nanocarriers for therapeutic applications.  相似文献   

12.
Nanoparticles of different properties, such as size, charge, and rigidity, are used for drug delivery. Upon interaction with the cell membrane, because of their curvature, nanoparticles can bend the lipid bilayer. Recent results show that cellular proteins capable of sensing membrane curvature are involved in nanoparticle uptake; however, no information is yet available on whether nanoparticle mechanical properties also affect their activity. Here liposomes and liposome-coated silica are used as a model system to compare uptake and cell behavior of two nanoparticles of similar size and charge, but different mechanical properties. High-sensitivity flow cytometry, cryo-TEM, and fluorescence correlation spectroscopy confirm lipid deposition on the silica. Atomic force microscopy is used to quantify the deformation of individual nanoparticles at increasing imaging forces, confirming that the two nanoparticles display distinct mechanical properties. Uptake studies in HeLa and A549 cells indicate that liposome uptake is higher than for the liposome-coated silica. RNA interference studies to silence their expression show that different curvature-sensing proteins are involved in the uptake of both nanoparticles in both cell types. These results confirm that curvature-sensing proteins have a role in nanoparticle uptake, which is not restricted to harder nanoparticles, but includes softer nanomaterials commonly used for nanomedicine applications.  相似文献   

13.
Despite intense research on biological and biomedical applications of nanoparticles, our understanding of their basic interactions with the biological environment is still incomplete. Systematic variation of the physicochemical properties of the nanoparticles is widely seen as a promising strategy to obtain further insights. In view of the key role of the protein adsorption layer forming on nanoparticles in contact with biofluids, we systematically varied the surface charge of proteins adsorbing onto nanoparticles by chemical modification so as to examine the effect of Coulomb forces in modulating nano‐bio interactions. We chose human serum albumin (HSA) as a model protein and ultra‐small, negatively charged fluorescent gold nanoclusters (AuNCs) as model nanoparticles. By using fluorescence and CD spectroscopies, we measured binding affinities and structural changes upon binding of the HSA variants. The strengths of the protein‐nanoparticle interactions were found to change substantially upon modifying the surface charge of HSA. Furthermore, by using inductively coupled plasma optical emission spectroscopy, confocal fluorescence microscopy, scanning transmission electron microscopy and cell viability assays, we observed that cellular interactions of the AuNCs, including their adherence to cell membranes, uptake efficiency and cytotoxicity, depended markedly on the different surface charges of the HSA variants adsorbed onto the nanoparticles. These results illustrate vividly that the cellular responses to nanoparticle exposure depend on the specific properties of the proteins that adsorb onto nanoparticles from biofluids.  相似文献   

14.
The European regulatory framework is examined in relation to nanotechnology based medical devices and medicinal products. Medical applications of nanotechnology will have to comply with the requirement for a high level of public health, safety, consumer, and environmental protection. An evaluation of the possible health or environmental risks of nanoparticles must therefore be carried out and it is important to ensure that particle size and chemistry are taken into account when investigating possible adverse effects. Further research is needed on the toxicological and ecotoxicological properties of nanoparticles, their uptake in the body, accumulation in tissues and organs, transport characteristics, exposure and dose-response data, and their distribution and persistence in the environment. The existing regulations appear adequate to manage the risks of nanotechnology at its current stage of development but continuous review of the regulatory regime will be needed to determine whether it is sufficient to protect human health and the environment. Modification of the legislation may prove necessary as new scientific evidence emerges regarding the effects of nanoparticles on living organisms and in the ecosystems.  相似文献   

15.
Nanoparticles have seen wide applications in cellular research and development. One major issue that is unclear is the uptake of nanoparticles by cells. In this study, we have investigated the uptake of silica-coated nanoparticles by HeLa cells, employing rhoadime 6G isothiocyanate (RITC)-doped nanoparticles as a synchronous fluorescent signal indicator. These nanoparticles were synthesized with reverse microemulsion. A few factors, such as nanoparticle concentration, incubation time and temperature, and serum and inhibitors in culture medium were assessed on the nanoparticle's cellular uptake. The experimental results demonstrated that uptake was maximum after a 6 h incubation and was higher at 37 degrees C than that at 4 degrees C. Nanoparticle uptake depended on the nanoparticle concentration and was inhibited by hyperosmolarity, K+ depletion. In addition, serum in culture medium decreased the cellular uptake of nanoparticles. The results indicated that the uptake of silica-coated nanoparticles by HeLa cells was a concentration-, time-, and energy-dependent endocytic process. Silica-coated nanoparticles could be transported into HeLa cells in part through adsorptive endocytosis and in part through fluid-phase endocytosis.  相似文献   

16.
Targeted delivery of therapeutic agents is an important way to improve the therapeutic index and reduce side effects. To design nanoparticles for targeted delivery, both enhanced tumor tissue accumulation/retention and enhanced cellular internalization should be considered simultaneously. So far, there have been very few nanoparticles with immutable structures that can achieve this goal efficiently. Hierarchical targeting, a novel targeting strategy based on stimuli responsiveness, shows good potential to enhance both tumor tissue accumulation/retention and cellular internalization. Here, the recent design and development of hierarchical targeting nanoplatforms, based on changeable particle sizes, switchable surface charges and activatable surface ligands, will be introduced. In general, the targeting moieties in these nanoplatforms are not activated during blood circulation for efficient tumor tissue accumulation, but re‐activated by certain internal or external stimuli in the tumor microenvironment for enhanced cellular internalization.  相似文献   

17.
In vitro experiments typically measure the uptake of nanoparticles by exposing cells at the bottom of a culture plate to a suspension of nanoparticles, and it is generally assumed that this suspension is well-dispersed. However, nanoparticles can sediment, which means that the concentration of nanoparticles on the cell surface may be higher than the initial bulk concentration, and this could lead to increased uptake by cells. Here, we use upright and inverted cell culture configurations to show that cellular uptake of gold nanoparticles depends on the sedimentation and diffusion velocities of the nanoparticles and is independent of size, shape, density, surface coating and initial concentration of the nanoparticles. Generally, more nanoparticles are taken up in the upright configuration than in the inverted one, and nanoparticles with faster sedimentation rates showed greater differences in uptake between the two configurations. Our results suggest that sedimentation needs to be considered when performing in vitro studies for large and/or heavy nanoparticles.  相似文献   

18.
19.
Biomedical applications of non‐spherical nanoparticles such as photothermal therapy and molecular imaging require their efficient intracellular delivery, yet reported details on their interactions with the cell remain inconsistent. Here, the effects of nanoparticle geometry and receptor targeting on the cellular uptake and intracellular trafficking are systematically explored by using C166 (mouse endothelial) cells and gold nanoparticles of four different aspect ratios (ARs) from 1 to 7. When coated with poly(ethylene glycol) strands, the cellular uptake of untargeted nanoparticles monotonically decreases with AR. Next, gold nanoparticles are functionalized with DNA oligonucleotides to target Class A scavenger receptors expressed by C166 cells. Intriguingly, cellular uptake is maximized at a particular AR: shorter nanorods (AR = 2) enter C166 cells more than nanospheres (AR = 1) and longer nanorods (AR = 4 or 7). Strikingly, long targeted nanorods align to the cell membrane in a near‐parallel manner followed by rotating by ≈90° to enter the cell via a caveolae‐mediated pathway. Upon cellular entry, targeted nanorods of all ARs predominantly traffic to the late endosome without progressing to the lysosome. The studies yield important materials design rules for drug delivery carriers based on targeted, anisotropic nanoparticles.  相似文献   

20.
A basic understanding of the driving forces for the formation of multiligand coronas or self‐assembled monolayers over metal nanoparticles is mandatory to control and predict the properties of ligand‐protected nanoparticles. Herein, 1H nuclear magnetic resonance experiments and advanced density functional theory (DFT) modeling are combined to highlight the key parameters defining the efficiency of ligand exchange on dispersed gold nanoparticles. The compositions of the surface and of the liquid reaction medium are quantitatively correlated for bifunctional gold nanoparticles protected by a range of competing thiols, including an alkylthiol, arylthiols of varying chain length, thiols functionalized by ethyleneglycol units, and amide groups. These partitions are used to build scales that quantify the ability of a ligand to exchange dodecanethiol. Such scales can be used to target a specific surface composition by choosing the right exchange conditions (ligand ratio, concentrations, and particle size). In the specific case of arylthiols, the exchange ability scale is exploited with the help of DFT modeling to unveil the roles of intermolecular forces and entropic effects in driving ligand exchange. It is finally suggested that similar considerations may apply to other ligands and to direct biligand synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号