首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gold nanoparticles (AuNPs) are promising vehicles for cancer immunotherapy, with demonstrated efficacy in immune delivery and innate cell stimulation. Nevertheless, their potential has yet to be assessed in the in vivo application of peptide cancer vaccines. In this study, it is hypothesized that the immune distribution and adjuvant qualities of AuNPs could be leveraged to facilitate delivery of the ovalbumin (OVA) peptide antigen and the CpG adjuvant and enhance their therapeutic effect in a B16‐OVA tumor model. AuNP delivery of OVA (AuNP‐OVA) and of CpG (AuNP‐CpG) enhanced the efficacy of both agents and induced strong antigen‐specific responses. In addition, it is found that AuNP‐OVA delivery alone, without CpG, is sufficient to promote significant antigen‐specific responses, leading to subsequent anti‐tumor activity and prolonged survival in both prophylactic and therapeutic in vivo tumor models. This enhanced therapeutic efficacy is likely due to the adjuvant effect of peptide coated AuNPs, as they induce inflammatory cytokine release when cultured with bone marrow dendritic cells. Overall, AuNP‐mediated OVA peptide delivery can produce significant therapeutic benefits without the need of adjuvant, indicating that AuNPs are effective peptide vaccine carriers with the potential to permit the use of lower and safer adjuvant doses during vaccination.  相似文献   

2.
There is a need for effective vaccine delivery systems and vaccine adjuvants without extraneous excipients that can compromise or minimize their efficacy. Vaccine adjuvants cytosine–phosphate–guanosine oligodeoxynucleotides (CpG ODNs) can effectively activate immune responses to secrete cytokines. However, CpG ODNs are not stable in serum due to enzymatic cleavage and are difficult to transport through cell membranes. Herein, DNA microcapsules made of CpG ODNs arranged into 3D nanostructures are developed to improve the serum stability and immunostimulatory effect of CpG. The DNA microcapsules allow encapsulation and co‐delivery of cargoes, including glycogen. The DNA capsules, with >4 million copies of CpG motifs per capsule, are internalized in cells and accumulate in endosomes, where the Toll‐like receptor 9 is engaged by CpG. The capsules induce up to 10‐fold and 20‐fold increases in tumor necrosis factor (TNF)‐α and interleukin (IL)‐6 secretion, respectively, in RAW264.7 cells compared with CpG ODNs. Furthermore, the microcapsules stimulate TNF‐α and IL‐6 secretion in a concentration‐ and time‐dependent manner. The immunostimulatory activity of the capsules correlates to their intracellular trafficking, endosomal confinement, and degradation, assessed by confocal and super‐resolution microscopy. These DNA capsules can serve as both adjuvants to stimulate an immune reaction and vehicles to encapsulate vaccine peptides/genes to achieve synergistic immune effects.  相似文献   

3.
A new gold‐nanoparticle (AuNP)‐based strategy to dynamically modulate the activity of DNA polymerases and realize a hot‐start (HS)‐like effect in the polymerase chain reaction (PCR) is reported, which effectively prevents unwanted nonspecific amplification and improves the performance of PCRs. A high‐fidelity Pfu DNA polymerase is employed as the model system. Interestingly, AuNPs inactivate the polymerase activity of Pfu at low temperature, thus resembling an antibody‐based HS PCR. This inhibition effect of AuNPs is demonstrated for the preamplification polymerization activity of the PCR, which largely suppresses nonspecific amplification at temperatures between 30 and 60 °C and leads to highly specific and sensitive PCR amplification with Pfu. Significantly, the fidelity of Pfu is not sacrificed in the presence of AuNPs. Therefore, this AuNP‐based HS strategy provides a straightforward and potentially versatile approach to realize high‐performance PCR amplification.  相似文献   

4.
Gold nanoparticles (AuNPs) are widely used as carriers or therapeutic agents due to their great biocompatibility and unique physical properties. Transforming growth factor‐beta 1 (TGF‐β1), a member of the cysteine‐knot structural superfamily, plays a pivotal role in many diseases and is known as an immunosuppressive agent that attenuates immune response resulting in tumor growth. The results reported herein reflect strong interactions between TGF‐β1 and the surface of AuNPs when incubated with serum‐containing medium, and demonstrate a time‐ and dose‐dependent pattern. Compared with other serum proteins that can also bind to the AuNP surface, AuNP–TGFβ1 conjugate is a thermodynamically favored compound. Epithelial cells undergo epithelial–mesenchymal transition (EMT) upon treatment with TGF‐β1; however, treatment with AuNPs reverses this effect, as detected by cell morphology and expression levels of EMT markers. TGF‐β1 is found to bind to AuNPs through S–Au bonds by X‐ray photoelectron spectroscopy. Fourier transform infrared spectroscopy is employed to analyze the conformational changes of TGF‐β1 on the surface of AuNPs. The results indicate that TGF‐β1 undergoes significant conformational changes at both secondary and tertiary structural levels after conjugation to the AuNP surface, which results in the deactivation of TGF‐β1 protein. An in vivo experiment also shows that addition of AuNPs attenuates the growth of TGF‐β1‐secreting murine bladder tumor 2 cells in syngeneic C3H/HeN mice, but not in immunocompromised NOD‐SCID mice, and this is associated with an increase in the number of tumor‐infiltrating CD4+ and CD8+ T lymphocytes and a decrease in the number of intrasplenic Foxp3(+) lymphocytes. The findings demonstrate that AuNPs may be a promising agent for modulating tumor immunity through inhibiting immunosuppressive TGF‐β1 signaling.  相似文献   

5.
In this work, a convenient method to enhance the photoluminescence (PL) of single‐walled carbon nanotubes (SWNTs) in aqueous solutions is provided. Dispersing by single‐stranded DNA (ssDNA) and modifying with gold nanoparticles (AuNPs), about tenfold PL enhancement of the SWNTs is observed. More importantly, the selective PL enhancement is achieved for some particular chiralities of interest over all other chiralities, by using certain specific ssDNA sequences that are reported to recognize these particular chiralities. By forming AuNP–DNA–SWNT nanohybrids, ssDNA serves as superior molecular spacers that on one hand protect SWNT from direct contacting with AuNP and causing PL quench, and on the other hand attract the AuNP in close proximity to the SWNT to enhance its PL. This PL enhancement method can be utilized for the PL analysis of SWNTs in aqueous solutions, for biomedical imaging, and may serve as a prescreening method for the recognition and separation of single chirality SWNTs by ssDNA.  相似文献   

6.
Bacterial type IV pili (T4P) are polymeric protein nanofibers that have diverse biological roles. Their unique physicochemical properties mark them as a candidate biomaterial for various applications, yet difficulties in producing native T4P hinder their utilization. Recent effort to mimic the T4P of the metal‐reducing Geobacter sulfurreducens bacterium led to the design of synthetic peptide building blocks, which self‐assemble into T4P‐like nanofibers. Here, it is reported that the T4P‐like peptide nanofibers efficiently bind metal oxide particles and reduce Au ions analogously to their native counterparts, and thus give rise to versatile and multifunctional peptide–metal nanocomposites. Focusing on the interaction with Au ions, a combination of experimental and computational methods provides mechanistic insight into the formation of an exceptionally dense Au nanoparticle (AuNP) decoration of the nanofibers. Characterization of the thus‐formed peptide–AuNPs nanocomposite reveals enhanced thermal stability, electrical conductivity from the single‐fiber level up, and substrate‐selective adhesion. Exploring its potential applications, it is demonstrated that the peptide–AuNPs nanocomposite can act as a reusable catalytic coating or form self‐supporting immersible films of desired shapes. The films scaffold the assembly of cardiac cells into synchronized patches, and present static charge detection capabilities at the macroscale. The study presents a novel T4P‐inspired biometallic material.  相似文献   

7.
Because nanoparticles are finding uses in myriad biomedical applications, including the delivery of nucleic acids, a detailed knowledge of their interaction with the biological system is of utmost importance. Here the size‐dependent uptake of gold nanoparticles (AuNPs) (20, 30, 50 and 80 nm), coated with a layer‐by‐layer approach with nucleic acid and poly(ethylene imine) (PEI), into a variety of mammalian cell lines is studied. In contrast to other studies, the optimal particle diameter for cellular uptake is determined but also the number of therapeutic cargo molecules per cell. It is found that 20 nm AuNPs, with diameters of about 32 nm after the coating process and about 88 nm including the protein corona after incubation in cell culture medium, yield the highest number of nanoparticles and therapeutic DNA molecules per cell. Interestingly, PEI, which is known for its toxicity, can be applied at significantly higher concentrations than its IC50 value, most likely because it is tightly bound to the AuNP surface and/or covered by a protein corona. These results are important for the future design of nanomaterials for the delivery of nucleic acids in two ways. They demonstrate that changes in the nanoparticle size can lead to significant differences in the number of therapeutic molecules delivered per cell, and they reveal that the toxicity of polyelectrolytes can be modulated by an appropriate binding to the nanoparticle surface.  相似文献   

8.
Telomerase is over‐expressed in over 85% of all known human tumors. This renders the enzyme a valuable biomarker for cancer diagnosis and an important therapeutic target. The most widely used telomeric repeat amplification protocol (TRAP) assay has been questioned for telomerase detection. It is reported that human telomerase activity can be visualized by using primer‐modified Au nanoparticles. The working principle is based on the elongated primers conjugated to the gold nanoparticle (AuNP) surface, which can fold into a G‐quadruplex to protect the AuNPs from the aggregation. The developed simple and sensitive colorimetric assay can measure telomerase activity down to 1 HeLa cell µL?1. More importantly, this assay can be easily extended to high‐throughput and automatic format. The AuNP‐TS method is PCR‐free and therefore avoids the amplification‐related errors and becomes more reliable to evaluate telomerase activity. This assay has also been used for initial screening of telomerase inhibitors as anticancer drug agents.  相似文献   

9.
Surface functionality is an essential component for processing and application of metal–organic frameworks (MOFs). A simple and cost‐effective strategy for DNA‐mediated surface engineering of zirconium‐based nanoscale MOFs (NMOFs) is presented, capable of endowing them with specific molecular recognition properties and thus expanding their potential for applications in nanotechnology and biotechnology. It is shown that efficient immobilization of functional DNA on NMOFs can be achieved via surface coordination chemistry. With this strategy, it is demonstrated that such porphyrin‐based NMOFs can be modified with a DNA aptamer for targeting specific cancer cells. Furthermore, the DNA–NMOFs can facilitate the delivery of therapeutic DNA (e.g., CpG) into cells for efficient recognition of endosomal Toll‐like receptor 9 and subsequent enhanced immunostimulatory activity in vitro and in vivo. No apparent toxicity is observed with systemic delivery of the DNA–NMOFs in vivo. Overall, these results suggest that the strategy allows for surface functionalization of MOFs with different functional DNAs, extending the use of these materials to diverse applications in biosensor, bioimaging, and nanomedicine.  相似文献   

10.
11.
Gold nanoparticles (AuNP) have been widely used for drug delivery and have recently been explored for applications in cancer immunotherapy. Although AuNPs are known to accumulate heavily in the spleen, the particle distribution within immune cells has not been thoroughly studied. Here, cellular distribution of Cy5 labeled 50 nm AuNPs is characterized within the immune populations of the spleen from naïve and tumor bearing mice using flow cytometry. Surprisingly, approximately 30% of the detected AuNPs are taken up by B cells at 24 h, with about 10% in granulocytes, 18% in dendritic cells, and 8% in T cells. In addition, 3% of the particles are detected within myeloid derived suppressor cells, an immune suppressive population that could be targeted for cancer immunotherapy. Furthermore, it is observed that, over time, the particles traveled from the red pulp and marginal zone to the follicles of the spleen. Taking into consideration that the particle cellular distribution does not change at 1, 6 and 24 h, it is highly suggestive that the immune populations carry the particles and migrate through the spleen instead of the particles migrating through the tissue by cell‐cell transfer. Finally, no difference is observed in particle distribution between naïve and tumor bearing mice in the spleen, and nanoparticles are detected within 0.7% of dendritic cells of the tumor microenvironment. Overall, these results can help inform and influence future AuNP delivery design criteria including future applications for nanoparticle‐mediated immunotherapy.  相似文献   

12.
New imaging probes with high sensitivity and stability are urgently needed to accurately detect sentinel lymph nodes (SLNs) for successful cancer diagnosis. Herein, the use of highly sensitive and stable PEGylated radionuclide‐embedded gold nanoparticles (PEG‐RIe‐AuNPs) is reported for the detection of SLNs by combined positron emission tomography and Cerenkov luminescence imaging (PET/CLI). PEG‐RIe‐AuNPs show high sensitivity and stability both in vitro and in vivo, and are not toxic to normal ovarian and immune cells. In vivo PET/CLI imaging clearly reveals SLNs as early as 1 h post PEG‐RIe‐AuNP‐injection, with peak signals achieved at 6 h postinjection, which is consistent with the biodistribution results. Taken together, the data provide strong evidence that PEG‐RIe‐AuNPs are promising as potential lymphatic tracers in biomedical imaging for pre and intraoperative surgical guidance.  相似文献   

13.
The assembly of plasmonic metal nanoparticles into hot spot surface‐enhanced Raman scattering (SERS) nanocluster probes is a powerful, yet challenging approach for ultrasensitive biosensing. Scaffolding strategies based on self‐complementary peptides and proteins are of increasing interest for these assemblies, but the electronic and the photonic properties of such hybrid nanoclusters remain difficult to predict and optimize. Here, split‐green fluorescence protein (sGFP) fragments are used as molecular glue and the GFP chromophore is used as a Raman reporter to assemble a variety of gold nanoparticle (AuNP) clusters and explore their plasmonic properties by numerical modeling. It is shown that GFP seeding of plasmonic nanogaps in AuNP/GFP hybrid nanoclusters increases near‐field dipolar couplings between AuNPs and provides SERS enhancement factors above 108. Among the different nanoclusters studied, AuNP/GFP chains allow near‐infrared SERS detection of the GFP chromophore imidazolinone/exocyclic C?C vibrational mode with theoretical enhancement factors of 108–109. For larger AuNP/GFP assemblies, the presence of non‐GFP seeded nanogaps between tightly packed nanoparticles reduces near‐field enhancements at Raman active hot spots, indicating that excessive clustering can decrease SERS amplifications. This study provides rationales to optimize the controlled assembly of hot spot SERS nanoprobes for remote biosensing using Raman reporters that act as molecular glue between plasmonic nanoparticles.  相似文献   

14.
Gene therapy is a potential method for treating a large range of diseases. Gene vectors are widely used in gene therapy for promoting the gene delivery efficiency to the target cells. Here, gold nanoparticles (AuNPs) coated with dimethyldioctadecylammonium bromide (DODAB)/dioleoylphosphatidylethanolamine (DOPE) are synthesized using a facile method for a new gene vector (DODAB/DOPE‐AuNPs), which possess 3‐ and 1.5‐fold higher transfection efficiency than those of DODAB‐AuNPs and a commercial transfection agent, respectively. Meanwhile, it is nontoxic with concentrations required for effective gene delivery. Imaging and quantification studies of cellular uptake reveal that DOPE increases gene copies in cells, which may be attributed to the smaller size of AuNPs/DNA complexes. The dissociation efficiency of DNA from the endocytic pathway is quantified by incubating with different buffers and investigated directly in the cells. The results suggest that DOPE increases the internalization of AuNPs/DNA complexes and promotes DNA release from early endosomes for the vector is sensitive to the anionic lipid membrane and the decreasing pH along the endocytic pathway. The new vector contains the potential to be the new alternative as gene delivery vector for biomedical applications.  相似文献   

15.
A tumor‐responsive nanoprobe based on a conjugated polyelectrolyte and gold nanoparticle (AuNP) hybrid was designed to response to the low pH extracellular microenvironment in tumor with light‐up fluorescence. AuNPs with positive surface charges were prepared by direct reducing Au salt with sodium borohydride and stabilized by cystamine. A pH triggered charge‐reversible polymer and a water‐soluble cationic conjugated polyelectrolyte (CPE) were sequentially deposited onto the AuNP surface through electrostatic interaction. The obtained hybrid probe is monodispersed with an average diameter of 68.3 nm by dynamic light scattering measurement. In physiological conditions (pH ≈ 7.4), the hybrid probe is almost non‐fluorescent due to the super‐quenching of CPE by AuNPs via energy/charge transfer and efficient exciton migration along the polymer backbone. When exposed to acidic extracellular microenvironments in tumor (pHe ≈ 6.5), the acid‐labile amides hydrolyze into primary amines. The generated amine groups result in strong electrostatic repulsion between CPE and AuNPs, leading to recovered probe fluorescence. The fluorescence turn‐on is further utilized for tumor extracellular acidic microenvironment imaging. In addition, under in vivo conditions, the nanosized hybrid probe exhibits specific accumulation in tumor tissue with light‐up fluorescence, which provides new opportunities for easy tumor imaging and identification.  相似文献   

16.
Understanding the molecular mechanisms governing nanoparticle–membrane interactions is of prime importance for drug delivery and biomedical applications. Neutron reflectometry (NR) experiments are combined with atomistic and coarse‐grained molecular dynamics (MD) simulations to study the interaction between cationic gold nanoparticles (AuNPs) and model lipid membranes composed of a mixture of zwitterionic di‐stearoyl‐phosphatidylcholine (DSPC) and anionic di‐stearoyl‐phosphatidylglycerol (DSPG). MD simulations show that the interaction between AuNPs and a pure DSPC lipid bilayer is modulated by a free energy barrier. This can be overcome by increasing temperature, which promotes an irreversible AuNP incorporation into the lipid bilayer. NR experiments confirm the encapsulation of the AuNPs within the lipid bilayer at temperatures around 55 °C. In contrast, the AuNP adsorption is weak and impaired by heating for a DSPC–DSPG (3:1) lipid bilayer. These results demonstrate that both the lipid charge and the temperature play pivotal roles in AuNP–membrane interactions. Furthermore, NR experiments indicate that the (negative) DSPG lipids are associated with lipid extraction upon AuNP adsorption, which is confirmed by coarse‐grained MD simulations as a lipid‐crawling effect driving further AuNP aggregation. Overall, the obtained detailed molecular view of the interaction mechanisms sheds light on AuNP incorporation and membrane destabilization.  相似文献   

17.
Aiming to enhance the immunogenicity of subunit vaccines, a novel antigen delivery and adjuvant system based on dopamine polymerization on the surface of poly(d ,l ‐lactic‐glycolic‐acid) nanoparticles (NPs) with multiple mechanisms of immunity enhancement is developed. The mussel‐inspired biomimetic polydopamine (pD) not only serves as a coating to NPs but also functionalizes NP surfaces. The method is facile and mild including simple incubation of the preformed NPs in the weak alkaline dopamine solution, and incorporation of hepatitis B surface antigen and TLR9 agonist unmethylated cytosine‐guanine (CpG) motif with the pD surface. The as‐constructed NPs possess pathogen‐mimicking manners owing to their size, shape, and surface molecular immune‐activating properties given by CpG. The biocompatibility and biosafety of these pathogen‐mimicking NPs are confirmed using bone marrow‐derived dendritic cells. Pathogen‐mimicking NPs hold great potential as vaccine delivery and adjuvant system due to their ability to: 1) enhance cytokine secretion and immune cell recruitment at the injection site; 2) significantly activate and maturate dendritic cells; 3) induce stronger humoral and cellular immune responses in vivo. Furthermore, this simple and versatile dopamine polymerization method can be applicable to endow NPs with characteristics to mimic pathogen structure and function, and manipulate NPs for the generation of efficacious vaccine adjuvants.  相似文献   

18.
Conductive films that are highly transparent and flexible are extremely attractive for emerging optoelectronic applications. Currently, indium‐doped tin oxide films are the most widely used transparent conductive films and much research effort is devoted to developing alternative transparent conductive materials to overcome their drawbacks. In this work, a novel and facile approach for fabricating transparent conductive Au nanosheets from Au nanoparticles (AuNPs) is proposed. Irradiating an AuNP monolayer at the air–water interface with UV light results in a nanosheet with ≈3.5 nm thickness and ≈80% transparency in the UV–visible region. Further, the so‐fabricated nanosheets are highly flexible and can maintain their electrical conductivity even when they are bent to a radius of curvature of 0.6 mm. Fourier‐transform infrared and X‐ray photoelectron spectroscopy characterizations reveal that the transformation of the monolayer of AuNPs into the nanosheet is induced by the photodecomposition and/or photodetachment of the dodecanethiol ligands capping the AuNPs. Further, the UV‐irradiation of a hybrid monolayer consisting of AuNPs and silica particles affords the patterning of Au nanosheets with periodic hole arrays.  相似文献   

19.
Nanomedicine is a rapidly growing field that has the potential to deliver treatments for many illnesses. However, relatively little is known about the biological risks of nanoparticles. Some studies have shown that nanoparticles can have an impact on the aggregation properties of proteins, including fibril formation. Moreover, these studies also show that the capacity of nanoscale objects to induce or prevent misfolding of the proteins strongly depends on the primary structure of the protein. Herein, light is shed on the role of the peptide primary structure in directing nanoparticle‐induced misfolding by means of two model peptides. The design of these peptides is based on the α‐helical coiled‐coil folding motif, but also includes features that enable them to respond to pH changes, thus allowing pH‐dependent β‐sheet formation. Previous studies showed that the two peptides differ in the pH range required for β‐sheet folding. Time‐dependent circular dichroism spectroscopy and transmission electron microscopy are used to characterize peptide folding and aggregate morphology in the presence of negatively charged gold nanoparticles (AuNPs). Both peptides are found to undergo nanoparticle‐induced fibril formation. The determination of binding parameters by isothermal titration calorimetry further reveals that the different propensities of both peptides to form amyloid‐like structures in the presence of AuNPs is primarily due to the binding stoichiometry to the AuNPs. Modification of one of the peptide sequences shows that AuNP‐induced β‐sheet formation is related to the structural propensity of the primary structure and is not a generic feature of peptide sequences with a sufficiently high binding stoichiometry to the nanoparticles.  相似文献   

20.
Gold nanoparticle (AuNP) assemblies (GNAs) have attracted attention since enhanced coupling plasmonic resonance (CPR) emerged in the nanogap between coupling AuNPs. For one dimensional GNAs (1D‐GNAs), most CPR from the nanogaps could be easily activated by electromagnetic waves and generate drastically enhanced CPR because the nanogaps between coupling AuNPs are linearly distributed in the 1D‐GNAs. The reported studies focus on the synthesis of 1D‐GNAs and fundamental exploration of CPR. There are still problems which impede further applications in nanomedicine, such as big size (>500 nm), poor water solubility, and/or poor stability. In this study, a kind of 1D flexible caterpillar‐like GNAs (CL‐GNAs) with ultrasmall nanogaps, good water solubility, and good stability is developed. The CL‐GNAs have a flexible structure that can randomly move to change their morphology, which is rarely reported. Numerous ultrasmall nanogaps (<1 nm) are linearly distributed along the structure of CL‐GNAs and generate enhanced CPR. The toxicity assessments in vitro and vivo respectively demonstrate that CL‐GNAs have a low cytotoxicity and good biocompatibility. The CL‐GNAs can be used as an efficient photothermal agent for photothermal therapy, a probe for Raman imaging and photothermal imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号