首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Different types of click chemistry reactions are proposed and used for the functionalization of surfaces and materials, and covalent attachment of organic molecules. In the present work, two different catalyst‐free click approaches, namely azide–alkyne and thiol–alkyne click chemistry are studied and compared for the immobilization of microarrays of azide or thiol inks on functionalized glass surfaces. For this purpose, the surface of glass is first functionalized with dibenzocyclooctyne‐acid (DBCO‐acid), a cyclooctyne with a carboxyl group. Then, the DBCO‐terminated surfaces are functionalized via microchannel cantilever spotting with different fluorescent and nonfluorescent azide and thiol inks. Although both routes work reliably for surface functionalization, the protein binding experiments reveal that using a thiol–alkyne route will obtain the highest surface density of molecular immobilization in such spotting approaches. The obtained achievements and results from this work can be used for design and manufacturing of microscale patterns suitable for biomedical and biological applications.  相似文献   

2.
With the use of the copper(I)-catalyzed (3 + 2) azide-alkyne cycloaddition, an element of "click chemistry," stationary phases carrying long alkyl chains or soybean trypsin inhibitor have been prepared for use in HPLC separations in the reversed-phase and affinity modes, respectively. The ligands were attached via a triazole ring to size monodisperse porous beads containing either alkyne or azide pendant functionalities. Alkyne-containing beads prepared by direct copolymerization of propargyl acrylate with ethylene dimethacrylate were allowed to react with azidooctadecane to give a reversed-phase sorbent. Azide-functionalized beads were prepared by chemical modification of glycidyl methacrylate particles. Subsequent reaction with a terminal aliphatic alkyne produced a reversed-phase sorbent similar to that obtained from the alkyne beads. Soybean trypsin inhibitor was functionalized with N-(4-pentynoyloxy)succinimide to carry alkyne groups and then allowed to react with the azide-containing beads to produce an affinity sorbent for trypsin. The performance of these stationary phases was demonstrated with the HPLC separations of a variety of peptides and proteins.  相似文献   

3.
We report a general click chemistry approach for the layer-by-layer assembly of ultrathin, polymer films on particles and the subsequent formation of polymer click capsules (CCs). Poly(acrylic acid) copolymers, synthesized with a minor component of either alkyne (PAA-Alk) or azide (PAA-Az) functionality, were alternately assembled on silica particles. The (PAA-Az/PAA-Alk)-coated particles were subsequently functionalized by exploiting the free alkyne click moieties present in the film upon exposure to an azide-modified rhodamine dye. Further, PAA CCs, obtained following removal of the silica particle template, were shown to exhibit pH-responsive behavior. This was demonstrated by reversible size changes of the CCs upon cycling between basic and acidic solutions. Polymer CCs are anticipated to find applications in various fields, including drug delivery and sensing.  相似文献   

4.
Copper nanoparticles (Cu‐NPs) have a wide range of applications as heterogeneous catalysts. In this study, a novel green biosynthesis route for producing Cu‐NPs using the metal‐reducing bacterium, Shewanella oneidensis is demonstrated. Thin section transmission electron microscopy shows that the Cu‐NPs are predominantly intracellular and present in a typical size range of 20–40 nm. Serial block‐face scanning electron microscopy demonstrates the Cu‐NPs are well‐dispersed across the 3D structure of the cells. X‐ray absorption near‐edge spectroscopy and extended X‐ray absorption fine‐structure spectroscopy analysis show the nanoparticles are Cu(0), however, atomic resolution images and electron energy loss spectroscopy suggest partial oxidation of the surface layer to Cu2O upon exposure to air. The catalytic activity of the Cu‐NPs is demonstrated in an archetypal “click chemistry” reaction, generating good yields during azide‐alkyne cycloadditions, most likely catalyzed by the Cu(I) surface layer of the nanoparticles. Furthermore, cytochrome deletion mutants suggest a novel metal reduction system is involved in enzymatic Cu(II) reduction and Cu‐NP synthesis, which is not dependent on the Mtr pathway commonly used to reduce other high oxidation state metals in this bacterium. This work demonstrates a novel, simple, green biosynthesis method for producing efficient copper nanoparticle catalysts.  相似文献   

5.
In this article, we described click chemistry methodology for the incorporation of biocompatible polymer chains to Magnetite nanoparticles (NPs). We used a reduction co-precipitation method to obtain Fe3O4 particles in aqueous solution. As a next step, magnetic NPs surface were modified by a silanization reaction with (3-bromopropyl)trimethoxysilane in order to introduce bromine groups on the particles surface which were converted to azide groups by the reaction with sodium azide. Acetylene functionalized poly(ethylene glycol) (a-PEG) and poly(ε-caprolactone) (a-PCL) were synthesized and grafted onto the surface of azide functionalized NPs via “click” reaction to obtain magnetic NPs. Success of the different functionalization processes at different stages was studied using Fourier Transform infrared spectroscopy (FTIR). The morphologies of magnetic NPs were further investigated by transmission electron microscopy (TEM). The magnetization and superparamagnetic behavior of naked Fe3O4 NPs and coated NPs at room temperature was investigated by the measurement of hysteresis curves using a Vibrating Sample Magnetometer (VSM).  相似文献   

6.
Antibodies, most commonly IgGs, have been widely used as targeting ligands in research and therapeutic applications due to their wide array of targets, high specificity and proven efficacy. Many of these applications require antibodies to be conjugated onto surfaces (e.g. nanoparticles and microplates); however, most conventional bioconjugation techniques exhibit low crosslinking efficiencies, reduced functionality due to non‐site‐specific labeling and random surface orientation, and/or require protein engineering (e.g. cysteine handles), which can be technically challenging. To overcome these limitations, we have recombinantly expressed Protein Z, which binds the Fc region of IgG, with an UV active non‐natural amino acid benzoylphenyalanine (BPA) within its binding domain. Upon exposure to long wavelength UV light, the BPA is activated and forms a covalent link between the Protein Z and the bound Fc region of IgG. This technology was combined with expressed protein ligation (EPL), which allowed for the introduction of a fluorophore and click chemistry‐compatible azide group onto the C‐terminus of Protein Z during the recombinant protein purification step. This enabled the crosslinked‐Protein Z‐IgG complexes to be efficiently and site‐specifically attached to aza‐dibenzocyclooctyne‐modified nanoparticles, via copper‐free click chemistry.  相似文献   

7.
Polyurethane (PU)-grafted carbon nanotubes were synthesized by the coupling of alkyne moiety decorated single walled carbon nanotube (SWCNT) with azide moiety containing PU using Cu(I) catalyzed Huisgen [3 + 2] cycloaddition click chemistry. The azide moiety containing poly(s-caprolactone)diol was synthesized by ring-opening polymerization and further used for PU synthesis. Alkyne-functionalizion of SWCNT was completed by the reaction of p-aminophenyl propargyl ether with SWCNT using a solvent free diazotization procedure. Nuclear magnetic resonance, Fourier transform infrared, and Raman spectroscopic measurements confirmed the functionalization of SWCNT. Scanning electron microscopy and transmission electron microscopy images showed an excellent dispersion of SWCNTs, and specially debundling of SWCNTs could be observed due to polymer assisted dispersion. A quantitative grafting was successfully achieved even at high content of functional groups.  相似文献   

8.
Protein molecules on solid surfaces are essential to a number of applications, such as biosensors, biomaterials, and drug delivery. In most approaches for protein immobilization, inter‐molecular distances on the solid surface are not controlled and this may lead to aggregation and crowding. Here, a simple approach to immobilize individual protein molecules in a well‐ordered 2D array is shown, using nanopatterns obtained from a polystyrene‐block‐poly(2‐hydroxyethyl methacrylate) (PS‐b‐PHEMA) diblock copolymer thin film. This water‐stable and protein‐resistant polymer film contains hexagonally ordered PS cylindrical domains in a PHEMA matrix. The PS domains are activated by incorporating alkyne‐functionalized PS and immobilizing azide‐tagged proteins specifically onto each PS domain using “Click” chemistry. The nanometer size of the PS domain dictates that each domain can accommodate no more than one protein molecule, as verified by atomic force microscopy imaging. Immunoassay shows that the amount of specifically bound antibody scales with the number density of individual protein molecules on the 2D nanoarrays.  相似文献   

9.
We demonstrate the generation of multi‐component spot microarrays by blotting different ink solutions via quill‐like pens. The obtained arrays are immobilized by click‐chemistry in form of the copper(I)‐catalyzed azide‐alkyne cycloaddition and remain stable against washing and immersion in aqueous solution. The average spot radius ranges from 10 to 20 μm and is about an order of magnitude smaller than in currently commercially applied arraying techniques, effectively bridging the gap to high resolution methods as dip‐pen nanolithography and polymer pen lithography. The use of the quill‐like‐pen‐generated spot microarrays as binding assay is demonstrated by capturing of streptavidin from solution and by bioactive sandwich structures from neutravidin and biotin‐labeled fibronectin. Thus, our multi‐component spot microarrays have ideal dimensions and biochemical properties to accommodate (single) cells. Additionally, the building up of the cell‐recruiting protein sandwich structure on top of the basic spot microarray allows for the highly selective adhesion of fibroblasts. This results then in ordered (single) cell arrays, demonstrating the bio‐compatibility and high throughput of this multi‐component spot microarray platform.  相似文献   

10.
The profiling of allergic responses is a powerful tool in biomedical research and in judging therapeutic outcome in patients suffering from allergy. Novel insights into the signaling cascades and easier readouts can be achieved by shifting activation studies of bulk immune cells to the single cell level on patterned surfaces. The functionality of dinitrophenol (DNP) as a hapten in the induction of allergic reactions has allowed the activation process of single mast cells seeded on patterned surfaces to be studied following treatment with allergen specific Immunoglobulin E antibodies. Here, a click‐chemistry approach is applied in combination with polymer pen lithography (PPL) to pattern DNP‐azide on alkyne‐terminated surfaces to generate arrays of allergen. The large area functionalization offered by PPL allows an easy incorporation of such arrays into microfluidic chips. In such a setup, easy handling of cell suspension, incubation process, and read‐out by fluorescence microscopy will allow immune cell activation screening to be easily adapted for diagnostics and biomedical research.  相似文献   

11.
Magnetic‐plasmonic nanoparticles have received considerable attention for widespread applications. These nanoparticles (NPs) exhibiting surface‐enhanced Raman scattering (SERS) activities are developed due to their potential in bio‐sensing applicable in non‐destructive and sensitive analysis with target‐specific separation. However, it is challenging to synthesize these NPs that simultaneously exhibit low remanence, maximized magnetic content, plasmonic coverage with abundant hotspots, and structural uniformity. Here, a method that involves the conjugation of a magnetic template with gold seeds via chemical binding and seed‐mediated growth is proposed, with the objective of obtaining plasmonic nanostructures with abundant hotspots on a magnetic template. To obtain a clean surface for directly functionalizing ligands and enhancing the Raman intensity, an additional growth step of gold (Au) and/or silver (Ag) atoms is proposed after modifying the Raman molecules on the as‐prepared magnetic‐plasmonic nanoparticles. Importantly, one‐sided silver growth occurred in an environment where gold facets are blocked by Raman molecules; otherwise, the gold growth is layer‐by‐layer. Moreover, simultaneous reduction by gold and silver ions allowed for the formation of a uniform bimetallic layer. The enhancement factor of the nanoparticles with a bimetallic layer is approximately 107. The SERS probes functionalized cyclic peptides are employed for targeted cancer‐cell imaging and separation.  相似文献   

12.
Self-organization of colloidal metal nanoparticles into micro- and nanostructured assemblies is currently of tremendous interest promising to find new size- and structure-dependent physical properties. Owing to its unique recognition capabilities and physicochemical stability, DNA can be used as a molecular linker for gold nanoparticles and is a promising construction material for their precise spatial positioning. Due to the enormous specificity of nucleic acid hybridization, the site-specific immobilization of DNA-functionalized gold colloids (1–40 nm) to solid supports, previously functionalized with a complementary DNA array, allows the fabrication of novel nanostructured surface architectures. Scanning force microscopy (SFM), used to characterize the intermediate steps of the DNA-directed immobilization (DDI) on a gold substrate, provides initial insight into the specificity and efficiency of this technique.  相似文献   

13.
A self‐assembly approach for the design of multifunctional nanomaterials consisting of different nanoparticles (gold, iron oxide, and lanthanide‐doped LiYF4) is developed. This modular system takes advantage of the light‐responsive supramolecular host–guest chemistry of β‐cyclodextrin and arylazopyrazole, which enables the dynamic and reversible self‐assembly of particles to spherical nanoparticle aggregates in aqueous solution. Due to the magnetic iron oxide nanoparticles, the aggregates can be manipulated by an external magnetic field leading to the formation of linear structures. As a result of the integration of upconversion nanoparticles, the aggregates are additionally responsive to near‐infrared light and can be redispersed by use of the upconversion effect. By varying the nanoparticle and linker concentrations the composition, size, shape, and properties of the multifunctional nanoparticle aggregates can be fine‐tuned.  相似文献   

14.
Synthesis of metal–organic materials is often dependent on the reaction conditions of suitable solvent/solvent mixture and temperature. A new finding based on a previously described protocol is reported: instead of obtaining metal–organic polyhedra (MOP), a metal–organic framework (MOF) with a 2D layered structure is obtained, following the same reported protocol. The 2D Cu(II)–5‐prop‐2‐ynoxyisophthlate MOF, crystallized in a kagomé‐type structure, is synthesized using different solvent systems at room temperature, as well as under solvothermal (nonhydrothermal) conditions. Under harsh reaction conditions, alkyne functional groups maintain their integrity and the copper does not catalyze the oxidative coupling of the terminal alkyne groups. X‐ray diffraction analyses confirm the structure and phase purity of the product. Based on the present results and the previous work reported by Zhao et al., it seems that two products, namely 0D MOP and 2D MOF, are equally possible when using the same reactants under same reaction conditions. However, the materials obtained in all the trials are MOF instead of MOP. From the structure point of view, there is a difference in connectivity of the initial building units that determines whether the product is MOP or MOF.  相似文献   

15.
A multi‐component nanosystem based on graphene and comprising individual cyclodextrins at its surface is assembled, creating hybrid structures enabling new and important functionalities: optical imaging, drug storage, and cell targeting for medical diagnosis and treatment. These nanohybrids are part of a universal system of interchangeable units, capable of mutilple functionalities. The surface components, made of individual β‐cyclodextrin molecules, are the “hosts” for functional units, which may be used as imaging agents, for anti‐cancer drug delivery, and as tumor‐specific ligands. Specifically, individual β‐cyclodextrin (β‐CD), with a known capability to host various molecules, is considered a module unit that is assembled onto graphene nanosheet (GNS). The cyclodextrin‐functionalized graphene nanosheet (GNS/β‐CD) enables “host–guest” chemistry between the nanohybrid and functional “payloads”. The structure, composition, and morphology of the graphene nanosheet hybrid have been investigated. The nanohybrid, GNS/β‐CD, is highly dispersive in various physiological solutions, reflecting the high biostability of cyclodextrin. Regarding the host capability, the nanohybrid is fully capable of selectively accommodating various biological and functional agents in a controlled fashion, including the antivirus drug amantadine, fluorescent dye [5(6)‐carboxyfluorescein], and Arg‐Gly‐Asp (RGD) peptide‐targeting ligands assisted by an adamantine linker. The loading ratio of 5(6)‐carboxyfluorescein is as high as 110% with a drug concentration of 0.45 mg mL?1. The cyclic RGD‐functionalized nanohybrid exhibits remarkable targeting for HeLa cells.  相似文献   

16.
A novel bioorthogonal method for the modification of cells with single‐stranded DNA oligomers is compared to five alternative methods with respect to labeling efficacy, specificity, and effects on cell viability. The new method is based on oxime ligation of aminooxybiotin to aldehyde groups installed by periodate cleavage of cell‐surface glycans, followed by the coupling of preformed DNA–streptavidin conjugates. As compared with two literature‐reported methods based on direct coupling of N‐hydroxysuccinimidyl (NHS)–DNA or NHS–biotinylation as well as with techniques based on strain‐promoted alkyne‐azide cycloaddition, this method shows the highest labeling densities and is sufficiently mild to avoid cell damage. Functionality of the DNA tags is demonstrated by DNA‐directed immobilization on solid substrates and assembly of small cell aggregates.  相似文献   

17.
Super‐resolution fluorescence microscopy enables imaging of fluorescent structures beyond the diffraction limit. However, this technique cannot be applied to weakly fluorescent cellular components or labels. As an alternative, photothermal microscopy based on nonradiative transformation of absorbed energy into heat has demonstrated imaging of nonfluorescent structures including single molecules and ~1‐nm gold nanoparticles. However, previously photothermal imaging has been performed with a diffraction‐limited resolution only. Herein, super‐resolution, far‐field photothermal microscopy based on nonlinear signal dependence on the laser energy is introduced. Among various nonlinear phenomena, including absorption saturation, multiphoton absorption, and signal temperature dependence, signal amplification by laser‐induced nanobubbles around overheated nano‐objects is explored. A Gaussian laser beam profile is used to demonstrate the image spatial sharpening for calibrated 260‐nm metal strips, resolving of a plasmonic nanoassembly, visualization of 10‐nm gold nanoparticles in graphene, and hemoglobin nanoclusters in live erythrocytes with resolution down to 50 nm. These nonlinear phenomena can be used for 3D imaging with improved lateral and axial resolution in most photothermal methods, including photoacoustic microscopy.  相似文献   

18.
The discovery and elucidation of genetic codes has profoundly changed not only biology but also many fields of science and engineering. The fundamental building blocks of life comprises of four simple deoxyribonucleotides and yet their combinations serve as the carrier of genetic information that encodes for proteins that can carry out many biological functions due to their unique functionalities. Inspired by nature, the functionalities of DNA molecules have been used as a capping ligand for controlling morphology of nanomaterials, and such a control is sequence dependent, which translates into distinct physical and chemical properties of resulting nanoparticles. Herein, an overview on the use of DNA as engineered codes for controlling the morphology of metal nanoparticles, such as gold, silver, and Pd‐Au bimetallic nanoparticles is provided. Fundamental insights into rules governing DNA controlled growth mechanisms are also summarized, based on understanding of the affinity of the DNA nucleobases to various metals, the effect of combination of nucleobases, functional modification of DNA, the secondary structures of DNA, and the properties of the seed employed. The resulting physical and chemical properties of these DNA encoded nanomaterials are also reviewed, while perspectives into the future directions of DNA‐mediated nanoparticle synthesis are provided.  相似文献   

19.
A simple synthetic route is developed to achieve gold functionalized radial mesoporous silica nanoparticles (Au‐MsNP) synthesized by a one step procedure fully compatible with basic conditions required for the preparation of monodispersed nanospheres. In a second step, Au‐MsNP particles have been coated with phospholipid bilayers in order to design an advanced biofunctional platform with the gold metallic nanoparticles previously grown into the pore channels and responsible for a plasmonic activity relevant for biosensing. The size of Au‐MsNP is checked by dynamic light scattering while zeta potential measurements reflect their surface charge. The particle morphology is characterized by transmission and scanning electron microscopy and the Si/Au ratios are obtained from energy dispersive X‐ray analysis. The textural properties of Au‐MsNP, specific surface area and pore size, are determined from N2 adsorption. The supported bilayers are achieved from vesicles of different phospholipids incubated with Au‐MsNP particles. The coating efficiency is investigated by zeta potential and cryo‐ transmission electron microscopy. The plasmonic activities of bare Au‐MsNP particles and coated lipid bilayer Au‐MsNP platform are evidenced for two model systems: direct adsorption of bovine serum albumin and molecular recognition events between avidin molecules and biotin receptors integrated in the supported lipid bilayer.  相似文献   

20.
In the context of sensing and transport control, nanopores play an essential role. Designing multifunctional nanopores and placing multiple surface functionalities with nanoscale precision remains challenging. Interface effects together with a combination of different materials are used to obtain local multifunctionalization of nanoscale pores within a model pore system prepared by colloidal templating. Silica inverse colloidal monolayers are first functionalized with a gold layer to create a hybrid porous architecture with two distinct gold nanostructures on the top surface as well as at the pore bottom. Using orthogonal silane‐ and thiol‐based chemistry together with a control of the wetting state allows individual addressing of the different locations within each pore resulting in nanoscale localized functional placement of three different functional units. Ring‐opening metathesis polymerization is used for inner silica‐pore wall functionalization. The hydrophobized pores create a Cassie–Baxter wetting state with aqueous solutions of thiols, which enables an exclusive functionalization of the outer gold structures. In a third step, an ethanolic solution able to wet the pores is used to self‐assemble a thiol‐containing initiator at the pore bottom. Subsequent controlled radical polymerization provides functionalization of the pore bottom. It is demonstrated that the combination of orthogonal surface chemistry and controlled wetting states can be used for the localized functionalization of porous materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号