首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon nanotubes (CNT) in their various forms have great potential for use in the development of multifunctional multiscale laminated composites due to their unique geometry and properties. Recent advancements in the development of CNT hierarchical composites have mostly focused on multi-walled carbon nanotubes (MWCNT). In this work, single-walled carbon nanotubes (SWCNT) were used to develop nano-modified carbon fiber/epoxy laminates. A functionalization technique based on reduced SWCNT was employed to improve dispersion and epoxy resin-nanotube interaction. A commercial prepregging unit was then used to impregnate unidirectional carbon fiber tape with a modified epoxy system containing 0.1 wt% functionalized SWCNT. Impact and compression-after-impact (CAI) tests, Mode I interlaminar fracture toughness and Mode II interlaminar fracture toughness tests were performed on laminates with and without SWCNT. It was found that incorporation of 0.1 wt% of SWCNT resulted in a 5% reduction of the area of impact damage, a 3.5% increase in CAI strength, a 13% increase in Mode I fracture toughness, and 28% increase in Mode II interlaminar fracture toughness. A comparison between the results of this work and literature results on MWCNT-modified laminated composites suggests that SWCNT, at similar loadings, are more effective in enhancing the mechanical performance of traditional laminated composites.  相似文献   

2.
Hybrid laminated composites were fabricated based on high-density flexible polyurethane foam and reinforced with inter/intra-ply hybrid laminates. Transient responses of hybrid composites under quasi-static and dynamic loadings with various thicknesses and expansion factors were comparatively investigated. Experimental results revealed that foam cell collapse and hybrid laminates rupture were dominant mechanisms of energy absorption. Interlaminar stress and composite tensile strength determined the compressive potential energy and double-peak behavior. Quasi-static bursting and puncture resistances exhibited totally different relationships to various constructions and expansion factors. Energy dissipation capacity is influenced more significantly by the constant rate of transverse (CRT) puncture than dynamic puncture process. CRT puncture resistance is superior to the corresponding dynamic puncture resistance for all constructions. The hybrid laminated composites contributes to eliminate more than 95% of the incident force in the drop weight impact test. Compared with non-laminated panel, the hybrid laminated composites exhibited higher resistance to static and dynamic loadings.  相似文献   

3.
This paper describes some recent experimental techniques for leakage assessment in conjunction with permeability results of composite laminates with matrix cracks in relation to the application of composite laminates to cryogenic fuel tank structures. Tensile loadings were applied to CFRP tubular specimens utilizing a cryogenic loading system for leak measurement at room temperature (RT) and at liquid nitrogen temperature (LN2T). Helium gas permeability through damaged CFRP under both RT and LN2T conditions was compared. Furthermore, an experimental method for evaluating the effect of crack intersecting angle on the gas leakage was proposed, and measured results were presented.  相似文献   

4.
Under complex environments such as continuous or cyclic loads, the stiffness degradation for the laminated composites such as the carbon fiber reinforced polymer matrix composites is an important physical and mechanical response to the damage and failure evolution. It is essential to simulate the initial and subsequent evolution process of this kind of damage phenomenon accurately in order to explore the mechanical properties of composite laminates. This paper gives a comprehensive review on the general methodologies on the damage constitutive modeling by continuum damage mechanics (CDM), the various failure criteria, the damage evolution law simulating the stiffness degradation, and the finite element implementation of progressive failure analysis in terms of the mechanical response for the variable-stiffness composite laminates arising from the continuous failure. The damage constitutive modeling is discussed by describing the evolvement of damage tensors and conjugate forces in the CDM theory. The failure criteria which interpret the failure modes and their interaction are compared and some advanced methods such as the cohesive theory which are used to predict the damage evolution properties of composites are also discussed. In addition, the solution algorithm using finite element analysis which implements progressive failure analysis is summarized and several applicable methods which deal with the numerical convergence problem due to singular finite element stiffness matrices are also compared in order to explore the whole failure process and ultimate load-bearing ability of composite laminates. Finally, the multiscale progressive failure analysis as a popular topic which associates the macroscopic with microscopic damage and failure mechanisms is discussed and the extended finite element method as a new finite element technique is expected to accelerate its practical application to the progressive failure analysis of composite laminates.  相似文献   

5.
Fiber reinforced polymer matrix braided composites exhibit considerable non-linear response. Plasticity induced non-linear behavior of 2 × 2 braided composites was investigated using a two scale finite element modeling approach based on Hill’s yield function for orthotropic materials. The analysis was validated by comparing the macroscopic stress–strain predictions for a variety of 2 × 2 biaxial braids with experimental data. Experimental results were also compared with equivalent tape laminate analyses, which required only three elements and much less computational time. All the braids show considerable plasticity induced non-linearity. Predictions of both full 3D and equivalent tape laminate plastic analyses agree reasonably well with the experiments. Performance of braided composites was compared with tape laminates and it was seen that equivalent tape laminates have a better performance than their braid counterparts in terms of longitudinal modulus, but in terms of percentage moduli degradation due to plasticity, both braids and tapes have similar performance.  相似文献   

6.
Low-velocity impact tests were performed to investigate the impact behaviour of carbon fibre/epoxy composite laminates reinforced by short fibres and other interleaving materials. Characterisation techniques, such as cross-sectional fractography and scanning acoustic microscopy, were employed quantitatively to assess the internal damage of some composite laminates at the sub-surface under impact. Scanning electron microscopy was used to observe impact fractures and damage modes at the fracture surfaces of the laminate specimens. The results show that composite laminates experience various types of fracture; delamination, intra-ply cracking, matrix cracking, fibre breakage and damage depending on the interlayer materials. The trade-off between impact resistance and residual strength is minimised for composites reinforced by Zylon fibres, while that for composites interleaved by poly(ethylene-co-acrylic acid) (PEEA) film is substantial because of deteriorating residual strength, even though the damaged area is significantly reduced. Damages produced on the front and back surfaces of impact were also observed and compared for some laminates.  相似文献   

7.
Degradations initiated near the edges of a laminate can have a significant effect on its state of degradation, even at the core. Indeed, results from the literature show that laminates which have the same stress state at the core can have completely different states of degradation, even far away from the edges. The paper discusses the influence of the edge effect on damage initiation and propagation for a specific example. A computational micromechanical approach to the degradation of laminated composites was developed recently at LMT-Cachan. This is a hybrid approach in which, depending on the scale, the mechanisms are described using continuous damage mechanics or finite fracture mechanics. Initially developed for static loading, this technique is being extended to fatigue and environmental effects. The aim of this paper is to illustrate the capability of such an approach to take into account major observations during cyclic loading in an oxidizing atmosphere, even when edge effects are significant.  相似文献   

8.
In this study, the simplicity and strong physical meaning of micromechanics approach and capability of mesomechanics approach for damage analysis of structures with complex loadings are employed to develop a new micro‐meso approach. For this purpose, a new micromechanics model is developed to predict the matrix cracking initiation and evolution in laminated composites. These damage initiation and evolution are replaced with the damage criteria and flow rule in the continuum damage approach, respectively. The results of this procedure are used in the FEM damage analyses of laminated composites to predict constitutive response of layered composites. It is shown that, the predicted stress distribution and strain energy in a lamina unit cell are in good agreement with the finite element results. Furthermore, it is shown that the predicted stress–strain behaviours are in good agreement with the available experimental results for various laminates with different lay‐ups.  相似文献   

9.
复合材料层合板冲击后压-压疲劳寿命预测方法   总被引:2,自引:1,他引:1       下载免费PDF全文
针对冲击后复合材料层合板, 发展了含冲击初始损伤层合板的压-压疲劳寿命预测方法。该方法基于无损单向板的力学性能和疲劳特性, 对不同铺层参数、 不同几何尺寸以及不同冲击条件下层合板的疲劳寿命进行预测。为消除人为假设冲击损伤造成的误差, 对层合板在冲击载荷及冲击后疲劳载荷作用下的破坏进行全程分析, 即把冲击后层合板的实际损伤状态直接作为疲劳分析的初始状态。同时基于逐渐损伤思想, 推导了含冲击初始损伤层合板的应力分析过程, 建立了相应的三维逐渐累积损伤模型, 开发了参数化的复合材料层合结构冲击及冲击后疲劳破坏模拟程序, 为复合材料层合结构的抗冲击设计及其疲劳损伤扩展行为研究提供了较好的技术平台。   相似文献   

10.
An experimental and numerical investigation has been carried out to study the behavior of single and multiple laminated panels subjected to ballistic impact. A pressurized air gun is used to shoot the impactor, which can attain sufficient velocity to penetrate all the laminates in a multiple laminated panel. The incidental and residual velocity of the impactor is measured to estimate the energy absorption in the impact process. The commercially available code ABAQUS has been used for the numerical simulation where the impactor has been modeled as a rigid body and the laminates have been modeled with a simple shell element. A user material model based on a continuum damage mechanics concept for failure mechanism of laminated composites has been implemented. Experimental tests showed that the numerical model could satisfactorily predict the energy absorption. Most interestingly, it has clearly demonstrated a feasible phenomenon behind counterintuitive experimental results for the multiple laminated panels.  相似文献   

11.
鉴于传统的断裂力学无法用于受损复合材料层板,本文探索了损伤力学在复合材料层板中的应用.文内介绍了复合材料层板损伤试验的概况及损伤测试方法,文中三种层板单向拉伸损伤试验结果的分析表明在单向拉伸载荷下基于J.Lemaitre应变等效性假设的损伤能释放率Y2可用于描述受损复合材料层板的力学状态,它的演变方程通常可用Y2=α(σ/σc)β的简单函数形式来描述.对特定的层板,α、β是与初始缺陷无关的常数,可由层板损伤试验确定.试验数据表明在单向拉伸载荷下,临界损伤能释放率对特定的层板也是与初始缺陷无关的常数,反应了材料抗损伤扩展的能力.所有这些结论都为进一步建立完整损伤破坏判据奠定了基础.  相似文献   

12.
Fracture models to predict the strength of laminated composites having sharp notches demand the un-notched strength and the critical damage size ahead of the notch. The critical damage size, in general, depends on the material, geometry of the specimen and size of the sharp notch. The extraordinary success of a fracture model lies in its ability to combine a theoretical framework with experimentally measured quantities. Modifications are made in one of the stress-fracture criteria known as the point stress criterion for accurate prediction of notched tensile strength of composite laminates containing sharp notches. To examine the adequacy of these modifications, fracture data of central-sharp notched carbon/epoxy composite laminates with various lay-ups are considered. The notched strength estimates are found to be close to the test results. The modified point stress criterion is very simple and accurate in predicting the notched tensile strength of laminated composites.  相似文献   

13.
In this paper, the damage failure and behaviour of stitched composites under compression after impact (CAI) loading are experimentally investigated. This study focuses on the effect of stitch density and stitch thread thickness on the CAI strength and response of laminated composites reinforced by through-thickness stitching. Experimental findings show that stitched composites have higher CAI failure load and displacement, which corresponds to higher energy absorption during CAI damage, mainly attributed to greater energy consumption by stitch fibre rupture. The coupling relationships between CAI strength, impact energy, stitch density and stitch thread thickness are also revealed. It is understood that the effectiveness of stitching has high dependency on the applied impact energy. At low impact energy range, CAI strength is found to be solely dependent on stitch density, showing no influence of stitch thread thickness. It is however observed that stitch fibre bridging is rendered ineffective in moderately stitched laminates during compressive failure, as local buckling occurs between stitch threads, resulting in unstitched and moderately stitched laminates have similar CAI strength. The CAI strength of densely stitched laminates is much higher due to effective stitch fibre bridging and numerous stitch thread breakages. At high impact energy level, CAI strength is discovered to be intimately related to both stitch density and stitch thread thickness. Since CAI failure initiates from impact-induced delamination area, stitch fibre bridging is considerable for all specimens due to the relatively large delamination area present. Stitch threads effectively bridge the delaminated area, inhibit local buckling and suppress delamination propagation, thus leading to increased CAI strength for laminates stitched with higher stitch density and larger stitch thread thickness. Fracture mechanisms and crack bridging phenomenon, elucidated by X-ray radiography are also presented and discussed. This study reveals novel understanding on the effectiveness of stitch parameters for improving impact tolerance of stitched composites.  相似文献   

14.
This paper presents the experimental and numerical characterization of the interlaminar shear failure of hybrid composite laminates at cryogenic temperatures. Cryogenic short beam shear tests were performed on hybrid laminates consisting of woven glass fiber reinforced polymer (GFRP) composites and polyimide films to evaluate their interlaminar shear strength. Microscopic observations of damage accumulation and failure mechanisms were also made on failed specimens. In addition, a progressive damage analysis was conducted to predict the initiation and growth of damage in the specimens, and the interlaminar shear strength was determined from the maximum shear stress in the failure region. The damage effect on the interlaminar shear properties of hybrid laminates at cryogenic temperatures was examined based on the experimental and numerical results.  相似文献   

15.
This paper investigates the through-thickness tensile behavior of woven glass fiber reinforced polymer (GFRP) composite laminates at cryogenic temperatures. Tensile tests were carried out with cross specimens at room temperature and liquid nitrogen temperature (77 K), and the through-thickness elastic and strength properties of the woven GFRP laminates were evaluated. The failure characteristics of the woven GFRP laminates were also studied by optical and laser scanning microscopy observations. A three-dimensional finite element analysis was performed to calculate the stress distributions in the cross specimens, and the failure conditions of the specimens were examined. It is found that the cross specimen is suitable for the cryogenic through-thickness tensile characterization of laminated composite materials. In addition, the through-thickness Young's modulus of the woven GFRP composite laminates is dominated by the properties of the matrix polymer in the given temperature, while the tensile strength is characterized by both, the fiber to matrix interface energy and the cohesion energy of the matrix polymer.  相似文献   

16.
Analysis of stiffness loss in cross-ply composite laminates   总被引:1,自引:0,他引:1  
The behaviour of laminated composite plates beyond first-ply failure has been the subject of much research work. It is well known that generally, the load-bearing capability of laminated composite plates can remain significant despite the presence of some damage in the plies. Traditionally, the ply-discount method has been used among analysts and designers, although the approach is generally regarded as too conservative. It is therefore desirable to develop models for the prediction of the mechanical properties of damaged composite laminates at various applied loads, and to be able to correlate the changes in properties with the amount of damage and cracking within each constituent ply. Generally, if the models are to be useful as predictive tools, they must be capable of not only sufficiently describing the damage state but also the nature of the damage evolution with loading. This ‘evolution law’ is often obtained through fracture analysis, although it should be noted that the diffused nature of cracks and the multiplicity of failure modes in composites in general greatly complicates the analysis. The problem of transverse matrix cracking in cross-ply laminates under uniaxial tension is considerably simpler because it is essentially dominated by mode I fracture. Thus it is necessarily the first step for any model aiming to predict stiffness losses in composite laminates. In this paper, a constitutive model of the damage state for composite laminates, first proposed by Allen et al., is used with a damage evolution criterion based on strain energy to predict the stiffness loss due to matrix cracking in cross-ply laminated composite plates. Although the constitutive model does not require the determination of many constants, the state of damage is described by a vector of internal state variables (ISV), which contains information on the crack geometry and fracture modes. A series of parametric finite element analyses was performed to determine the effects of relative ply thicknesses, crack density and crack opening profile on the vector of ISVs. A computer algorithm was written for the analysis of cross-ply laminates based on the damage evolution criterion proposed in this work. The results of the analysis compare favourably with experimental measurements of progressive stiffness loss in damaged cross-ply graphite-epoxy laminates obtained from other researchers.  相似文献   

17.
复合材料层合板低速冲击逐渐累积损伤预测方法   总被引:7,自引:0,他引:7  
针对复合材料层板在冲击载荷下,各种损伤的产生和扩展是一个随载荷、时间和空间而演变的过程,发展了复合材料层合板低速冲击逐渐累积损伤预测方法.采用刚度退化技术和改进的Chang-Chang失效准则、显式有限元法来模拟复合材料层合板受到低速冲击下逐渐损伤过程.使用所发展的方法分析了[0m/90n/0m]铺层的复合材料层合板在低速冲击过程中的逐渐损伤扩展,结果表明本文的方法能较好地模拟复合材料层板在低速冲击下的损伤扩展及变形过程,计算结果与实验结果吻合较好;对不同冲击能量下层合板损伤扩展研究表明,冲击能量与分层损伤面积成线性关系.  相似文献   

18.
Composite laminates are susceptible to the transverse impact loads resulting in significant damage such as matrix cracking, fiber breakage and delamination. In this paper, a micromechanical model is developed to predict the impact damage of composite laminates based on microstructure and various failure models of laminates. The fiber and matrix are represented by the isotropic and elastic-plastic solid, and their impact failure behaviors are modeled based on shear damage model. The delaminaton failure is modeling by the interface element controlled by cohesive damage model. Impact damage mechanisms of laminate are analyzed by using the micromechanical model proposed. In addition, the effects of impact energy and laminated type on impact damage behavior of laminates are investigated. Due to the damage of the surrounding matrix near the impact point caused by the fiber deformation, the surface damage area of laminate is larger than the area of ??impact projectile. The shape of the damage area is roughly rectangle or elliptical with the major axis extending parallel to the fiber direction in the surface layer of laminate. The alternating laminated type with two fiber directions is more propitious to improve the impact resistance of laminates.  相似文献   

19.
Carbon fibre reinforced polymer (CFRP) laminated composites have become attractive in the application of wind turbine blade structures. The cyclic load in the blades necessitates the investigation on the flexural fatigue behaviour of CFRP laminates. In this study, the flexural fatigue life of the [+45/−45/0]2s CFRP laminates was determined and then analysed statistically. X-ray microtomography was conducted to quantitatively characterise the 3D fatigue damage. It was found that the fatigue life data can be well represented by the two-parameter Weibull distribution; the life can be reliably predicted as a function of applied deflections by the combined Weibull and Sigmodal models. The delamination at the interfaces in the 1st ply group is the major failure mode for the flexural fatigue damage in the CFRP laminate. The calculated delamination area is larger at the interfaces adjacent to the 0 ply. The delamination propagation mechanism is primarily matrix/fibre debonding and secondarily matrix cracking.  相似文献   

20.
Obtaining autoclave-level mechanical properties using in-situ consolidation of thermoplastic composites by Automated Tape Placement (ATP) is challenging. However, relatively recent availability of high quality ATP grade pre-preg material and tape heads equipped with more efficient heat sources (e.g. lasers) offers an opportunity to achieve improved mechanical properties and deposition rates. In the present study, carbon fibre–PEEK laminates, manufactured by laser-assisted ATP (LATP) and autoclave, are compared. Analysis of the through-thickness temperature distribution during LATP processing using thermocouples indicates that LATP cooling rates are extremely rapid and suggests full through-thickness melting of the pre-preg tape may not occur. Inadequate crystallinity, in conjunction with voids, compromised mechanical properties compared to autoclaved laminates but was beneficial in terms of the toughness of LATP laminates. Optimisation of pre-preg properties and processing parameters is required to realise the full potential of the LATP process in terms of mechanical properties, energy requirements, cost and deposition rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号