共查询到20条相似文献,搜索用时 156 毫秒
1.
基于传感器阵列与前馈神经网络的气体辨识系统 总被引:9,自引:0,他引:9
将气体传感器阵列与前馈神经网络模式识别技术相结合形成气体辨识技术相结合形成气体辨识系统,通过实验比较了不同的传感器信号预处理方法、前馈神经网络的结构和参数对气体辨识系统性能的影响,研究结果具有一定的工程应用价值。 相似文献
2.
为了有效监测化工厂等场所的危险气体和解决金属氧化物传感器普遍存在交叉敏感性的问题,首先使用不同的MEMS气体传感器组成传感器阵列。然后配制不同的实验气样进行测试,得到实验测试数据,并整理成训练集和测试集样本。最后,采用麻雀搜索算法优化的BP神经网络(SSA-BP)完成气体的定性、定量分析。实验测试结果表明:SSA可以有效提高预测模型的预测精度和稳定性,对乙醇、甲烷、氨气的定性识别的正确率达到100%,气体定量预测的最大相对误差不超过5.50%,预测效果得到明显改善。该系统可以满足混合气体的定性和定量分析要求,在危险化学气体监测方面具有良好的应用前景。 相似文献
3.
4.
5.
六个由贵金属Au,Cu,Pt做添加剂的SnO2气体传感器构成了微气体传感器阵列.首先研究了这六只传感器对挥发性有机化合物(VOCs)敏感特性,本文中的VOCs 指VOCsmixture和甲醛(HCHO)气体,其中VOCsmixture是10 ppm甲苯、1 ppm丙酮、5 ppm α-派烯和10 ppm乙醇的混合气.然后采用BP神经网络对所获得的传感器信号进行了分析、识别.结果显示微气体传感器阵列与BP神经网络相结合不仅能有效地识别低浓度的单成分VOCsmixture和甲醛气体,而且也能有效地识别两元气体中的VOCsmixture和甲醛气体. 相似文献
6.
基于气体传感器阵列的动态检测系统 总被引:3,自引:0,他引:3
描述了一个基于传感器阵列的气体检测系统,其阵列由6只气体传感器组成。系统采用较以往静态加热所不同的动态加热方式,重点介绍了该系统的硬件结构。通过分析系统的气体响应特性实验得出:该系统具有静态测试所不具备的许多优点,如,信号特征多、容易识别等。 相似文献
7.
8.
9.
针对目前常见的多元有害气体检测问题,设计并搭建了一种基于传感器阵列和集成 BP神经网络相结合的传感器阵列检测系统。在该系统中采用集成BP神经网络对传感器阵列的三种混合有害气体的响应信号进行回归分析。为了提高集成BP神经网络的预测准确性,又利用Adaboost算法对集成BP神经网络进行了优化。结果显示:该系统能够准确地检测气体组分,通过Adaboost算法对集成BP神经网络优化后,预测的平均相对误差小于2%,能够有效解决气体传感器的交叉敏感问题,提高传感器的选择性。 相似文献
10.
11.
气体传感器阵列中的信息融合 总被引:3,自引:2,他引:3
在获得传感器与食醋挥发气体反应的整个过程的数据的基础上,提取了传感器与食醋散发的气体反应的特征值。利用分辨率指数来确定所提取的特征参数是否最优,从而决定该特征值在以后模式识别中是否有用。再对那些分辨率指数大的特征参数进行主成分分析和神经网络分析。主成分分析结果表明不同醋之间区分得比较开,神经网络的识别正确率达到100%。该方法也可用于解决其它形式传感器阵列问题。 相似文献
12.
13.
气体传感器阵列中特征参数的提取与优化 总被引:5,自引:0,他引:5
用一组厚膜金属氧化锡气体传感器阵列对气味进行分析和识别 ,其中最重要、最难的因素是传感器特征提取技术和特征参数的优化 ,使所用的传感器阵列能快速准确地识别不同气味。然而 ,目前尚无令人满意的方法。本文中研制了适用于传感器阵列反应的试验装置 ,在获得传感器与食醋挥发气体反应的整个过程的数据的基础上 ,提取了传感器与食醋散发的气体反应的特征值。利用分辨率来提取 ,以确定所提取的特征参数是否最优 ,从而决定该特征值在以后模式识别中是否有用。再对那些分辨率指数大的特征参数进行主成分分析和神经网络分析 ,主成分分析结果表明不同醋之间区分得比较开 ,神经网络的识别正确率达到 10 0 %。显然这一方法也可用于解决其它形式传感器阵列问题。 相似文献
14.
15.
半导体气体传感器存在漂移问题,温度变化对漂移的影响尤为明显.在气体传感器阵列中,可以加入温度、湿度等传感器,监测其工作环境.实验系统采用恒温箱设定一组温度,制备气体样本20例(两种浓度样本各10例),采集传感器对样本的响应;通过人工神经网络来识别样本;当有误判发生时,在原网络中引入温度传感器的响应值,消除了误判,在一定程度上抑制了漂移,改善了网络性能,验证了该温度漂移抑制方法的可行性. 相似文献
16.
基于随机共振的气敏传感器阵列信号的识别研究 总被引:3,自引:2,他引:3
6只不同的碳纳米管气敏传感器用来识别甲醛、苯、甲苯、二甲苯4种挥发性有机物(VOC),传感器的响应输出在外加噪声的情况下通过单个阈值检测器,出现了阈上随机共振,使得传感器阵列采集的气体信号得到了增强.对不同种类的气体,最大互相关系数不同,而且对每类气体这个最大互相关系数是恒定的,因此能准确地用来代表不同种类的气体.实验结果表明基于随机共振的最大互相关系数法可以作为传感器阵列信号识别的一种新的算法,且准确度高.该方法在利用随机共振提高系统性能方面有很大的应用前景. 相似文献
17.
基于BP神经网络数据融合的瓦斯监测系统 总被引:2,自引:1,他引:2
井下瓦斯监测系统为多传感器监测系统,它通过不同功能、不同精度、不同位置的传感器,对所需要的被测量进行多方位、多角度的测量。但是,目前对于多传感器所测的数据还没有一种通用的、行之有效的处理方法,井下瓦斯浓度的监测很难作到实时、精确。因此,文章提出了一种基于BP神经网络数据融合的瓦斯监测系统的设计方案,该方案采用改进的BP神经网络算法对多传感器数据进行融合,并采用两级融合的方式对数据进行处理,以得到井下环境特征。仿真结果表明,基于BP神经网络数据融合的瓦斯监测系统具有较高的测量精度,极大地提高了数据采集的可靠性、全面性和有效性。 相似文献
18.
19.
目前有许多检测地沟油的方法,例如电导法、光谱法、色谱法等,但这些检测方法均需要在实验室环境下对油样进行处理,因此在地沟油检测方面仍缺乏快速、实时、对油样无损的检测方法.在此基础上,提出利用气体传感器阵列采集油样气味特征信息,使用支持向量机(SVM)算法对油样进行识别的方法.对75组正常食用油及45组地沟油建立了基于SVM的地沟油鉴别模型,并对15组正常食用油和15组地沟油进行识别,使用Matlab的SVM库及LIBSVM时的正确率均为27/30.实验证明了此方法的可行性,将算法在嵌入式平台上实现后可对油样进行快速、实时、无损鉴别. 相似文献
20.
介绍了自组织竞争网络和自组织影射网络的原理,对自组织竞争网络和自组织影射网络的优缺点进行了比较。采用大庆的油气层数据建立网络模型,对网络结构的参数进行了优化并对输入样本进行了聚类分析。数据分析表明自组织竞争网络和自组织影射网络都有较好的聚类结果,自组织竞争网络较自组织影射网络方法识别出的结果更客观可靠,是油气层识别的一种有效方法。 相似文献