首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the fast-flow, fast-cure, and reworkable underfill materials from two different vendors are considered. Emphasis is placed on the determination of the curing conditions such as temperature and time, and the material properties such as the thermal coefficient of expansion (TCE), storage modulus, loss modulus, glass transition temperature (T/sub g/), and moisture uptake of these underfill materials. Also, the key elements and steps of the solder-bumped flip-chips on low-cost substrates with these underfill materials such as the chip, printed circuit board (PCB), flip chip assembly, and underfill application are presented. Furthermore, the key elements and steps of the rework of the solder-bumped flip-chip assemblies with these underfill materials such as chip removal, chip reballing, substrate cleaning, and new chip placement are discussed. Finally, shear test results of the assemblies with one-time rework and no-rework are presented.  相似文献   

2.
A flip chip package was assembled by using 6-layer laminated polyimide coreless substrate, eutectic Sn37Pb solder bump, two kinds of underfill materials and Sn3.0Ag0.5Cu solder balls. Regarding to the yield, the peripheral solder joints were often found not to connect with the substrate due to the warpage at high temperature, modification of reflow profile was benefit to improve this issue. All the samples passed the moisture sensitive level test with a peak temperature of 260 °C and no delamination at the interface of underfill and substrate was found. In order to know the reliability of coreless flip chip package, five test items including temperature cycle test (TCT), thermal shock test (TST), highly accelerated stress test (HAST), high temperature storage test (HTST) and thermal humidity storage test (THST) were done. Both of the two underfill materials could make the samples pass the HTST and THST, however, in the case of TCT, TST and HAST, the reliability of coreless flip chip package was dominated by underfill material. A higher Young’s modules of underfill, the more die crack failures were found. Choosing a correct underfill material was the key factor for volume production of coreless flip chip package.  相似文献   

3.
The flip chip-on-organic-substrate packaging technology utilizes a particulate reinforced epoxy as the underfill (UF) to adhere the chip to the package or board, Although the use of underfill encapsulation leads to improved reliability of flip-chip solder interconnections, delamination at various interfaces becomes a major concern for assembly yield loss and package reliability. In spite of their importance, the adhesion and fracture behaviors of the underfill interfaces have not been investigated until recently. Considerable controversy exists over the effects of underfill formulation and the adhesion and toughening mechanisms of the interfaces. The present work focuses on investigating the effects of several key variables on the interface adhesion strengths for UF/chip and UF/organic substrate systems. These variables are underfill organosilane content, filler particle content, rubber particle content, surface morphology and chemistry of the chip and organic substrates. The approach of this study is to measure the effect of these variables on the interfacial fracture energy using the double-cantilever-beam (DCB) techniques. The results demonstrate that the underfill interfacial adhesion and fracture characteristics are controlled by several distinct but competing mechanisms, such as formation of primary bonds, crack-pinning by glass fillers, debonding of glass filler from epoxy matrix (defect formation), and cavitation and shearing induced by rubber particles. Fundamental understanding of the interfacial adhesion and toughening mechanisms can provide guidance for developing new processes and materials to enhance interfacial adhesion and reliability  相似文献   

4.
为了增加在有机基板上倒装芯片安装的可靠性,在芯片安装后,通常都要进行下填充。下填充的目的是为了重新分配由于硅芯片和有机衬底间热膨胀系数失配产生的热应力。然而,仅仅依靠填充树脂毛细管流动的传统下填充工艺存在一些缺点。为了克服这些缺点,人们研究出了一些新的材料和开发出了一些新的工艺。  相似文献   

5.
倒装芯片下填充工艺的新进展(一)   总被引:1,自引:0,他引:1  
为了增加在有机基板上倒装芯片安装的可靠性,在芯片安装后,通常都要进行下填充。下填充的目的是为了重新分配由于硅芯片和有机衬底间热膨胀系数失配产生的热应力。然而,仅仅依靠填充树脂毛细管流动的传统下填充工艺存在一些缺点。为了克服这些缺点,人们研究出了一些新的材料和开发出了一些新的工艺。  相似文献   

6.
Non-conductive adhesives (NCA), widely used in display packaging and fine pitch flip chip packaging technology, have been recommended as one of the most suitable interconnection materials for flip-chip chip size packages (CSPs) due to the advantages such as easier processing, good electrical performance, lower cost, and low temperature processing. Flip chip assembly using modified NCA materials with material property optimization such as CTEs and modulus by loading optimized content of nonconductive fillers for the good electrical, mechanical and reliability characteristics, can enable wide application of NCA materials for fine pitch first level interconnection in the flip chip CSP applications. In this paper, we have developed film type NCA materials for flip chip assembly on organic substrates. NCAs are generally mixture of epoxy polymer resin without any fillers, and have high CTE values un-like conventional underfill materials used to enhance thermal cycling reliability of solder flip chip assembly on organic boards. In order to reduce thermal and mechanical stress and strain induced by CTE mismatch between a chip and organic substrate, the CTE of NCAs was optimized by filler content. The flip chip CSP assembly using modified NCA showed high reliability in various environmental tests, such as thermal cycling test (-55/spl deg/C/+160/spl deg/C, 1000 cycle), high temperature humidity test (85/spl deg/C/85%RH, 1000 h) and high temperature storage test (125/spl deg/C, dry condition). The material properties of NCA such as the curing profile, the thermal expansion, the storage modulus and adhesion were also investigated as a function of filler content.  相似文献   

7.
This series of articles studies the processing, moisture sensitivity, reliability, and failure mode analysis of a number of commercial fast-flow, snap-cure underfill materials. It includes data on process analysis, processing times, and reliability of the test vehicles in air-to-air thermal cycling (-55°C to 125°C), liquid to liquid thermal shock (-55°C to 125°C), and J Standard 020 Revision A Level 3 Moisture Sensitivity Preconditioning followed by reliability testing. Samples cured using a second reflow pass are compared to baseline samples cured in a standard batch oven based on the underfill manufacturer's recommended cure schedule. Results from the processing of these new materials have shown a greatly reduced flow time from earlier generation underfill materials as all of these materials had flow times of less than 30 s under 5-mm test die. Through differential scanning calorimetry analysis, it was shown that materials requiring less than 8 min to cure exhibited at least 95% conversion (percentage of material cured) through the modified second side renew profile. Some of these commercial underfills have also passed J Standard 020 Revision A Level 3 Moisture Sensitivity testing. Specifically in this paper, the flip chip processing, underfill processing, moisture preconditioning, and preconditioning failure modes are presented  相似文献   

8.
对板上倒装芯片底充胶进行吸湿实验,并结合有限元分析软件研究了底充胶在湿敏感元件实验标准MSL—1条件下吸湿和热循环阶段的解吸附过程,测定了湿热环境对Sn3.8Ag0.7Cu焊料焊点可靠性的影响,并用蠕变变形预测了无铅焊点的疲劳寿命。结果表明:在湿热环境下,底充胶材料内部残留的湿气提高了焊点的应力水平。当分别采用累积蠕变应变和累积蠕变应变能量密度寿命预测模型时,无铅焊点的寿命只有1740和1866次循环周期。  相似文献   

9.
Thermomechanical reliability of solder joints in flip-chip packages is usually analyzed by assuming a homogeneous underfill ignoring the settling of filler particles. However, filler settling does impact flip chip reliability. This paper reports a numerical study of the influence of filler settling on the fatigue estimation of flip-chip solder joints. In total, nine underfill materials ( 35 vol% silica filler in three epoxies with three filler settling profiles for each epoxy) are individually introduced in a 2-D finite element (FE) model to compare the thermal response of flip chip solder joints that are surrounded by the underfill. The results show that the fatigue indicators for the solder joints (inelastic shear strain increments and inelastic shear strain energy density) corresponding to a gradual, nonuniform filler profile studied in this paper can be smaller than those associated with the uniform filler profile, suggesting that certain gradual filler settling profiles in conjunction with certain resin grades may favor a longer solder fatigue lifetime. The origin of this intriguing observation is in the fact that the solder fatigue indicators are a function of the thermal mismatch among the die, substrate, solder, and underfill materials. The thermal mechanics interplayed among these materials along with a gradual filler profile may allow for minimizing thermal mismatch; and thus lead to lower fatigue indicators.   相似文献   

10.
Electronic packaging designs are moving toward fewer levels of packaging to enable miniaturization and to increase performance of electronic products. One such package design is flip chip on board (FCOB). In this method, the chip is attached face down directly to a printed wiring board (PWB). Since the package is comprised of dissimilar materials, the mechanical integrity of the flip chip during assembly and operation becomes an issue due to the coefficient of thermal expansion (CTE) mismatch between the chip, PWB, and interconnect materials. To overcome this problem, a rigid encapsulant (underfill) is introduced between the chip and the substrate. This reduces the effective CTE mismatch and reduces the effective stresses experienced by the solder interconnects. The presence of the underfill significantly improves long term reliability. The underfill material, however, does introduce a high level of mechanical stress in the silicon die. The stress in the assembly is a function of the assembly process, the underfill material, and the underfill cure process. Therefore, selection and processing of underfill material is critical to achieving the desired performance and reliability. The effect of underfill material on the mechanical stress induced in a flip chip assembly during cure was presented in previous publications. This paper studies the effect of the cure parameters on a selected commercial underfill and correlates these properties with the stress induced in flip chip assemblies during processing  相似文献   

11.
As a concept to achieve low-cost, high-throughput flip chip on board (FCOB) assembly, a new process has been developed implementing next generation flip chip processing based no-flow fluxing underfill materials. The low-cost, high throughput flip chip process implements large area underfill printing, integrated chip placement and underfill flow and simultaneous solder interconnect reflow and underfill cure. The goals of this study are to demonstrate feasibility of no flow underfill materials and the high throughput flip chip process over a range of flip chip configurations, identify the critical process variables affecting yield, analyze the yield of the high throughput flip chip process, and determine the impact of no-flow underfill materials on key process elements. Reported in this work is the assembly of a series of test vehicles to assess process yield and process defects. The test vehicles are assembled by depositing a controlled mass of underfill material on the chip site, aligning chip to the substrate pads, and placing the chip inducing a compression type underfill flow. The assemblies are reflowed in a commercial reflow furnace in an air atmosphere to simultaneously form the solder interconnects and cure the underfill. A series of designed experiments identify the critical process variables including underfill mass, reflow profile, placement velocity, placement force, and underfill material system. Of particular interest is the fact that the no-flow underfill materials studied exhibit an affinity for unique reflow profiles to minimize process defects  相似文献   

12.
This research proposes a parametric analysis for a flip chip package with a constraint-layer structure. Previous research has shown that flip-chip type packages with organic substrates require underfill for achieving adequate reliability life. Although underfill encapsulant is needed to improve the reliability of flip chip solder joint interconnects, it will also increase the difficulty of reworkability, increase the packaging cost and decrease the manufacturing throughput. This research is based on the fact that if the thermal mismatch between the silicon die and the organic substrate could be minimized, then the reliability of the solder joint could be accordingly enhanced. This research proposes a structure using a ceramic-like material with CTE close to silicon, mounted on the backside of the substrate to constrain the thermal expansion of the organic substrate. The ceramic-like material could reduce the thermal mismatch between silicon die and substrate, thereby enhancing the reliability life of the solder joint. Furthermore, in order to achieve better reliability design of this flip chip package, a parametric analysis using finite element analysis is performed for package design. The design parameters of the flip chip package include die size, substrate size/material, and constraint-layer size/material, etc. The results show that this constraint-layer structure could make the solder joints of the package achieve the same range of reliability as the conventional underfill material. More importantly, the flip chip package without underfill material could easily solve the reworkability problem, enhance the thermal dissipation capability and also improve the manufacturing throughput  相似文献   

13.
Adhesion is one of the key properties of underfills used in flip chip assemblies. This paper characterizes the adhesion strengths of no-flow underfill materials to various die passivations using the shear test techniques. A novel shear test vehicle with planner underfill layers between the die and substrate is presented. The adhesion strengths and failure modes of the no-flow underfill materials during shear testing correlate well with their thermal shock reliability test results. Underfill adhesion related failures such as delamination and crack are investigated and correlated between flip chip assemblies and shear test vehicle assemblies without solder joint interconnects  相似文献   

14.
Solder joints, the most widely used flip chip on board (FCOB) interconnects, have a relatively low structural compliance due to the large thermal expansion mismatch between silicon die and the organic substrate. The coefficient of thermal expansion (CTE) of the printed wiring board (PWB) is almost an order of magnitude greater than that of the integrated circuit (IC). Under operating and testing conditions, this mismatch subjects the solder joints to large creep strains and leads to early failure of the solder connections. The reliability of such flip chip structures can be enhanced by applying an epoxy-based underfill between the chip and the substrate, encapsulating the solder joints. This material, once cured, mechanically couples the IC and substrate together to locally constrain the CTE mismatch. However, the effects of CTE mismatch are assumed to become more severe with increasing chip size. Even with the addition of an underfill material, it has been supposed that there are limits on the chip size used in flip chip applications  相似文献   

15.
In the flip-chip ball grid array (FCBGA) assembly process, no-flow underfill has the advantage over traditional capillary-flow underfill on shorter cycle time. Reliability tests are performed on both unmolded and molded FCBGA with three different types of no-flow underfill materials. The JEDEC Level-3 (JL3) moisture preconditioning, followed by reflow and pressure cooker test (PCT) is found to be a critical test for failures of underbump metallization (UBM) opening and underfill/die delamination. In this paper, various types of modeling techniques are applied to analyze the FCBGA-8×8 mm on moisture distribution, hygroswelling behavior, and thermomechanical stress. For moisture diffusion modeling, thermal-moisture analogy is used to calculate the degree of moisture saturation in the multi-material system of FCBGA. The local moisture concentration along the critical interface, e.g. die/underfill, is critical for delamination, because the moisture weakens the interfacial adhesion strength, generates internal vapor pressure during reflow, and induces tensile hygroswelling stress on UBM during PCT. The results of moisture distribution can be used as loading input for the subsequent hygroswelling modeling. The magnitude of hygroswelling stress acting on UBM is found to be greater than the thermal stress induced during reflow, both in tensile mode which may cause the UBM-opening failure. Underfill with lower saturated moisture concentration (Csat) and coefficient of moisture expansion (CME) are found to induce lower UBM stress and has better reliability results. Molded package generally has higher stress level than unmolded package. Parametric studies are performed to study the effects of no-flow underfill materials, package type (molded vs. unmolded), die thickness, and substrate size on the stresses of UBM during reflow and PCT.  相似文献   

16.
Flip chip attach on organic carriers is a novel electronic packaging assembly method which provides advantages of high input/output (I/O) counts, electrical performance and thermal dissipation. In this structure, the flip chip device is attached to organic laminate with predeposited eutectic solder. Mechanical coupling of the chip and the laminate is done via underfill encapsulant materials. As the chip size increases, the thermal mismatch between silicon and its organic carrier becomes greater. Adhesion becomes an important factor since the C4 joints fail quickly if delamination of the underfill from either chip or the solder mask interface occurs. Newly developed underfills have been studied to examine their properties, including interfacial adhesion strength, flow characteristics, void formation and cure kinetics. This paper will describe basic investigations into the properties of these underfills and also how these properties related to the overall development process. In addition, experiments were performed to determine the effects on adhesion degradation of flip chip assembly processes and materials such as IR reflow profile, flux quantity and residues. Surface treatment of both the chip and the laminate prior to encapsulation were studied to enhance underfill adhesion. Accelerated thermal cycling and highly accelerated stress testing (HAST) were conducted to compare various underfill properties and reliability responses  相似文献   

17.
The formation of underfill voids is an area of concern in the low cost, high throughput, or "no-flow" flip chip assembly process. This assembly process involves placement of a flip chip device directly onto the substrate pad site covered with pre-dispensed no-flow underfill. The forced motion of chip placement causes a convex flow front to pass over pad and solder mask-opening features promoting void capture. This paper determines the effects of substrate design on the phenomena of underfill voiding using the no-flow process. A full-factorial design experiment analyzes several empirically determined factors that can affect void capture in no-flow processing. The substrate design parameters included pad height, solder mask opening height, pad/solder mask opening separation, and pad pitch. The process parameters include chip placement velocity and underfill viscosity. The process robustness is measured in terms of the number of voids created during chip placement, and is further analyzed for the location and any visible modes of void formation. The goal of the work is to determine improved substrate designs to minimize voiding in flip chip processing using no flow underfills.  相似文献   

18.
Wafer-level flip chips provide an innovative solution in establishing flip chip as a standard surface mount process. In this paper, the wetting of solder bumps within confining underfill during the reflow of a wafer-level flip chip assembly is addressed. For real time monitoring of an assembly during the reflow process, a system using a high-speed camera is utilized. The collapse of solder bumps on the chip in the vertical direction is found to be a prerequisite of solder wetting. Underfill voids and outgassing are found to cause chip drift and tilt during the reflow process. In addition, symmetry of the underfill flow and fillet formation is identified as a critical factor in maintaining chip to substrate alignment. During solder wetting of the metallization pads on the substrate, the underfill needs to maintain a low viscosity. With the selection of a thermally stable underfill and corresponding process development, wafer-level flip chip assemblies with good solder interconnects are demonstrated  相似文献   

19.
Flip chip on board (FCOB) is one of the most quickly growing segments in advanced electronic packaging. In many cases, assembly processes are not capable of providing the high throughputs needed for integrated surface mount technology (SMT) processing (Tummala et al, 1997). A new high throughput process using no-flow underfill materials has been developed that has the potential to significantly increase flip chip assembly throughput. Previous research has demonstrated the feasibility and reliability of the high throughput process required for FCOB assemblies. The goal of this research was to integrate the high throughput flip chip process on commercial flip chip packages that consisted of high lead solder balls on a polyimide passivated silicon die bonded with eutectic solder bumped pads on the laminate substrate interface (Qi, 1999). This involved extensive parametric experimentation that focused on the following elements: no-flow process evaluation and implementation on the commercial packages, reflow profile parameter effects on eutectic solder wetting of high lead solder bumps, interactions between the no-flow underfill materials and the package solder interconnect and tented via features, void capture and void formation during processing, and material set compatibility and the effects on long term reliability performance  相似文献   

20.
This study investigates moisture diffusion characteristics of electronic packaging materials exhibiting Fickian and non-Fickian behaviors. The experimental investigation involves moisture absorption and desorption tests of homogenous underfill materials and inhomogeneous organic substrates representing Fickian and non-Fickian solids, respectively. In absorption tests, samples are dried out in an oven prior to testing in a humid environmental chamber. In desorption tests, samples are saturated in an environmental chamber under a specified temperature and relative humidity prior to the moisture desorption inside an oven. Samples in both tests are removed from the test environments and weighed frequently to obtain moisture weight change data. Using the test measurements of several different Fickian and non-Fickian materials, diffusivity/moisture concentration relationships are constructed. These relationships are implemented into a customized finite element simulation tool under the ANSYS platform. This tool is validated by using the experimental measurements on multimaterial samples prepared from underfill and substrates.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号