共查询到18条相似文献,搜索用时 62 毫秒
1.
支持向量机在铁水硅含量预报中的应用 总被引:3,自引:1,他引:3
支持向量机是基于统计学习理论发展而来的一种机器学习算法,它能较好地解决非线性、高维数、小样本、局部极小点等实际问题。本文提出了使用最小二乘支持向量机模型预测高炉铁水硅含量的方法,以山东莱钢1号高炉在线采集数据作为应用案例。结果表明最小二乘支持向量机模型预测高炉铁水硅含量命中率可达到85%以上。 相似文献
2.
基于WA SVM模型的高炉铁水含硅量预测 总被引:1,自引:0,他引:1
基于小波在处理非线性、非平稳随机信号和支持向量机在解决非线性、高维数、小样本等问题的优点,提出了一种二者组合的预测模型。先用小波变换将铁水含硅量的时间序列分解成不同的高频和低频层次,对不同层次构建支持向量机模型进行预测,然后通过序列重构得到原始时间序列的预测结果。利用山东莱钢1号高炉在线采集的数据作为应用案例,WA SVM组合模型与工程常用的AR模型和单一的最小二乘支持向量机模型的预测结果比较,预测精度有明显提高。 相似文献
4.
良好的铁水质量是铸铁性能可靠性和稳定性的保证,而铁水中硫(S)含量和硅(Si)含量是衡量铁水质量的主要指标,因此在出铁前精准获取铁水S含量和Si含量具有非常重要的意义。实验提出一种结合主成分分析(PCA)和最小二乘支持向量机(LS-SVM)模型的铁水S含量和Si含量的预测方法。将某钢厂大型高炉的在线采集数据作为研究对象,首先对影响铁水中S含量和Si含量变化因素的数据做主成分分析,求取主成分作为模型的输入变量,其次建立最小二乘支持向量机预测模型对铁水S含量和Si含量进行预测。在S含量预测过程中,正则化参数gam和核函数参数sig分别取20、700时,预测误差最小,其均方根误差为0.001 2,仿真时间为0.423 105s;Si含量预测过程中正则化参数gam和核函数参数sig分别取40、500时预测误差最小,均方根误差为0.023 8,仿真时间为0.079 522s。最后将实验结果与传统最小二乘支持向量机(LS-SVM)和结合PCA的BP神经网络预测模型(PCA+BP神经网络)的结果对比,后两组对比实验关于S含量预测的均方根误差分别为0.001 5和0.001 4,仿真时间分别为1.32... 相似文献
5.
近年来,为了适应钢材高级化的要求,开发了以炉外脱磷为中心的新的炼钢方法,并对其关键之一的高炉炉前铁水脱硅处理予以了注意。在炉前脱硅过程中,为了使下步工序脱磷处理能够顺利进行,要求把脱硅后的铁水含硅量控制在容许范围内,最近为了使脱磷费用最佳化,脱磷前铁水的含硅量正在接近适当范围。为了使脱硅处理后硅含量达到适当数值,有必要测定铁水含硅量,并控制脱硅剂的投入量。可是,采用以往的发光分析法,从取样到判明要耽搁30~40min 左右,不能适用于控制。其次,饮水含硅量是高炉炉况的重要指标之一,从硅成分的控制和炉况管理两方面考虑,都希望能实现铁水含硅量迅速测定。日本钢管公司福山钢铁厂根据千叶工业大学雀部实教授的方案,与大阪氧气工业公司共同开发了应用氧传感器双层电解质型的铁水含硅量传感器,并在该厂2号高炉顺利使用。 相似文献
6.
分析目前影响农村劳动力转移的主要因素,运用支持向量机理论将农村劳动力转移的主要影响因素作为量化指标,从农村经济持续发展的角度,结合<宁夏统计年鉴>1990~2002年数据,建立基于支持向量机的农村劳动力转移预测模型.对预测结果和精度进行分析,验证了该方法的有效性. 相似文献
7.
提出了一种最小二乘支持向量机的连铸板坯表面温度预测新模型.以中间罐温度、拉速、二冷水量等主要工艺因素为输入,连铸坯表面温度为输出,通过最小二乘支持向量机模型拟合输入与输出之间的复杂非线性函数关系.以现场采集的连铸生产工艺数据为样本对模型进行学习训练,用训练好的模型预测在一定工艺条件下板坯的表面温度.实践表明该方法具有建模速度快、预测精度高、操作简便等优点,不仅克服了常规的BP预测模型的不足,而且性能优于标准支持向量机预测模型. 相似文献
8.
9.
模糊贝叶斯网络应用于预测高炉铁水含硅量变化趋势 总被引:2,自引:0,他引:2
贝叶斯网络在高炉铁水含硅量预测中已取得较好效果.本文的进一步改进是利用模糊逻辑方法能很好地将数据分成离散模糊集的优势,对模型参数进行有效的模糊分类,以此作为贝叶斯网络的输入,进行混合建模.对山东莱钢1号高炉智能控制专家系统在线采集数据进行计算证明,对一般高炉混合模型可提高预测命中率到90%. 相似文献
10.
高炉铁水含硅量预报自适应数学模型的研制与试验 总被引:3,自引:0,他引:3
本文介绍了应用自适应原理跟踪高炉炉温变化的铁水含硅量预报自适应数学模型。模型由两部分组成,自适应主模型和专家系统子模型。应用该模型的铁水含硅量实时预报计算机系统已在鞍钢9号高炉试运行,效果良好,连续764炉的统计表明,预报命中率达82.3%。 相似文献
11.
12.
高炉铁水中的硫含量是描述铁水质量的一个重要指标.为了在出铁之前了解铁水中硫含量的高低,建立预测模型是必要的.本文利用遗传算法(GA)和BP神经网络构造了高炉铁水硫含量的预测分析模型,从某高炉选取117组数据进行学习和预测.运行结果表明,模型预测精度较高,当要求绝对误差为±3×10-6时,命中率可达61.54%;绝对误差为±4×10-6时,命中率可达84.69%.在此基础上,应用该模型回归分析了高炉风量、热风压力、富氧量、铁间料批数与铁水硫含量之间的相关关系,结果与高炉冶炼理论基本吻合,可为高炉生产提供一定的指导. 相似文献
13.
The high and fluctuation property of ??Si?? content in hot metal (HM) is always a problem in COREX process. The precise prediction of ??Si?? content in HM from COREX process can provide a theoretical basis and technical reference for stabilizing and reducing the ??Si?? content in HM. A back propagation (BP) neural network was established to predict the ??Si?? content in HM from COREX process. The input parameters of the model were determined by correlation analysis, and the hysteretic heats corresponding to each parameter were determined by calculating the Deng??s relevancy. The results show that when the prediction error is ??0. 1%, the hit rate is 80%. The method of continuous updating the training samples was used to improve the prediction accuracy of the model. The prediction results show that the hit rate is 90% in absolute error range of ??0. 1%, and the prediction accuracy has been greatly improved compared with previous model. The improved model can provide a theoretical basis for judging the change of ??Si?? content in HM and subsequent operations. 相似文献
14.
韶钢2号高炉近年来通过改善原燃烧质量、确保炉况稳定顺行、提高煤气利用率,使生铁含硅量不断降低。为了进一步降低生铁含硅量,必须继续做好原料管理和操作管理工作。 相似文献
15.
16.
17.