首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fatigue fracture of high-strength steels often occurs from small defect on the surface of a material or from non-metallic inclusion in the subsurface zone of a material. Under rotating bending loading, the S-N curve of high-strength steels consists of two curves corresponding to surface defect-induced fracture and internal inclusion-induced fracture. The surface defect-induced fracture occurs at high stress amplitude levels and low cycles. However, the subsurface inclusion-induced fracture occurs at low stress amplitude levels and high-cycle region of more than 106 cycles (giga-cycle fatigue life). There is a definite stress range in the S-N curve obtained from the rotating bending, where the crack initiation site changes from surface to subsurface, giving a stepwise S-N curve or a duplex S-N curve. On the other hand, under cyclic axial loading, the S-N curve of high-strength steels displays a continuous decline and surface defect-induced or internal inclusion-induced fracture occur in the whole range of amplitudes. In this paper, influence factors on S-N curve characteristics of high-strength steels, including size of inclusions and the stress gradient of bending fatigue, were investigated for rotating bending and cyclic axial loading in the giga-cycle fatigue regime. Then, based on the estimated subsurface crack growth rate from the S-N data, effect of inclusion size on the dispersion of fatigue life was explained, and it was clarified that the shape of S-N curve for subsurface inclusion-induced fracture depends on the inclusion size.  相似文献   

2.
This article deals with the experimental and predicted fatigue endurance of the high strength steels, European 100C6 (martensitic and bainitic) and the Japanese SUJ2 in the gigacycle regime. Tests were carried out with stress ratio R = −1 in tension–compression condition at room temperature. To attain the high number of cycles required in a reasonable period of time, an ultrasonic test machine working at 20 KHz was used to obtaining 1.7 × 109 cycles in approximately 24 h. The relationship between the geometrical properties of inclusions associated with fatigue failure and the fatigue life of these steels was studied. Thereafter, with basis on a simplified evaluation of the highest stress in the elliptical inclusion for fatigue Mode I, three models to predict the fatigue life for these high strength steels were proposed adjusting non-linear regression curves to the corresponding experimental results.  相似文献   

3.
In order to investigate the effects of non-metallic inclusion on the fatigue strength of high-strength steels, in 1963 W.E. Duckworth and E. Ineson conducted fatigue tests using specimens that contained artificially added spherical and angular alumina particles of various controlled sizes. Although the fatigue tests were carried out under the same nominal stresses in rotating-bending and tension-compression tests the fatigue lives of specimens showed a large scatter. They reported in some detail typical complicated aspects of the effects of non-metallic inclusions on the fatigue strength.

In the present study the authors have reanalysed these complicated fatigue data using the prediction equation that was proposed by Murakami et al for the quantitative evaluation of the effects of small defects on fatigue strength. The geometrical parameter that controls the scatter of the fatigue strength is the square root of the projection area √ area and not the shape of the inclusions, whether they are spherical or angular. It is shown from the data from the failed specimens that the fatigue strength of materials containing inclusions larger than a critical size can be predicted by the Vickers hardness (Hv) of the matrix and √ area of the inclusion regardless of the shape.  相似文献   


4.
Bearing steels and other high strength steels exhibit complex fatigue behavior in excess of 107 cycles due to their sensitivity to defects like inclusions. Failure occurring in the very high cycle fatigue regime and the lack of an asymptote in the measured S–N data raise the questions as to the existence of fatigue limit and prediction of the fatigue strength of the high strength steel components. A series of two papers are written to discuss on the characteristics of the very high cycle fatigue and their implication for engineering applications. In the present paper (Part I) a deterministic defect model is developed to describe the fatigue crack growth from de-bonded hard inclusions. The model is shown to provide a unified prediction of fatigue behavior in different regimes, i.e. low cycle fatigue regime dictated by the tensile strength, high cycle fatigue regime obeying Basquin’s law and the very high cycle fatigue regime featured by the fish-eye and ODA (optically dark area) surrounding an interior fatigue-initiating inclusion on the fracture surface. The model predictions agree well with experiments. A combination of the deterministic model with a stochastic model that describes the inclusion size distribution allows prediction of fatigue strength and fatigue limit associated with certain reliability of a steel component. It is found that very high cycle fatigue, associated with interior inclusions, is attributed to the very slow crack propagation in vacuum condition, and that an asymptote for fatigue limit observed for mild steels also exists for high strength steels such as bearing steels, but extends beyond the very high cycle fatigue regime normally measured to-date. Monte Carlo simulation shows that such a fatigue limit asymptote becomes clearly visible in excess of 1012 cycles, which is difficult to measure with today’s testing devices. Furthermore, the effects of steel cleanliness and specimen type and shape are studied by means of Monte Carlo simulations.  相似文献   

5.
对渗碳Cr-Ni齿轮钢进行应力比为0和0.3的室温超高周疲劳实验,观测试样中诱发裂纹萌生的夹杂和疲劳断口形貌,以全面评估渗碳Cr-Ni齿轮钢疲劳性能。将疲劳失效模式分为有细颗粒区(Fine granular area,FGA)的内部疲劳失效和有表面光滑区(Surface smooth area, SSA)的表面疲劳失效,并阐明了渗碳Cr-Ni齿轮钢的超高周内部疲劳破坏机制。基于累积损伤和位错能量法并结合细颗粒区形成机理和夹杂的最大评估尺寸,分别构建了两种渗碳Cr-Ni齿轮钢内部疲劳强度的预测模型。利用FGA尺寸与夹杂尺寸的比值和夹杂应力强度因子及应力比之间的关系,修正所提出的两种疲劳强度预测模型并给出了最大夹杂尺寸下的lFGA-S-N曲线。结果表明,基于累积损伤法和位错能量法分别构建的疲劳强度预测模型都可用于预测评估渗碳Cr-Ni齿轮钢在多种应力比下的内部疲劳强度,基于位错能量法的强度预测模型精度较高。  相似文献   

6.
为了给渗碳合金钢提供一种有效可行的超高周疲劳寿命预测方法,在应力比为0和0.3两种情况下,对渗碳Cr-Ni高强硬度合金钢展开疲劳试验研究.通过对试样断口的微观组织观测,发现渗碳层与基体材料中均有非金属夹杂的存在;通过对裂纹萌生位置和疲劳断口形貌的观察,将疲劳失效分为带有细晶粒区(Fine Granular Area,F...  相似文献   

7.
A cumulative fatigue damage model is presented to estimate fatigue life for high‐strength steels in high‐cycle and very‐high‐cycle fatigue regimes with fish‐eye mode failure, and a simple formula is obtained. The model takes into account the inclusion size, fine granular area (FGA) size, and tensile strength of materials. Then, the ‘equivalent crack growth rate’ of FGA is proposed. The model is used to estimate the fatigue life and equivalent crack growth rate for a bearing steel (GCr15) of present investigation and four high‐strength steels in the literature. The equivalent crack growth rate of FGA is calculated to be of the order of magnitude of 10?14–10?11 m/cycle. The estimated results accord well with the present experimental results and prior predictions and experimental results in the literature. Moreover, the effect of inclusion size on fatigue life is discussed. It is indicated that the inclusion size has an important influence on the fatigue life, and the effect is related to the relative size of inclusion for FGA. For the inclusion size close to the FGA size, the former has a substantial effect on the fatigue life. While for the relatively large value of FGA size to inclusion size, it has little effect on the fatigue life.  相似文献   

8.
The influences of major factors including applied stress amplitude, inclusion size and hydrogen content on granular-bright-facet (GBF) size of high strength steels in the very high cycle fatigue regime were studied in this article. It was found that the GBF size is determined by the applied stress amplitude and material hardness. If the applied stress amplitude is lower, the GBF size is larger. When a specimen containing bigger inclusions, the applied stress amplitude to form GBF can be reduced which results in the increase of GBF size. Hydrogen has different effects on the GBF size. The related reasons were discussed.  相似文献   

9.
The effect of inclusions on crack initiation and propagation in gigacycle fatigue was investigated experimentally and analytically in six high strength low alloy steels. Fatigue testing was performed at very high numbers of cycles through ultrasonic fatigue tests at 20 kHz. Inclusions at subsurface are common sites for fatigue crack nucleation in these alloys when cycles to failure was >107 cycles. A significant change in the slope of the S–N curve was observed accompanying the transition from surface to subsurface crack initiation. A deterministic model has been developed to predict the total fatigue life, i.e. crack initiation life and crack propagation life, from the measured inclusion sizes. The predicted fatigue strength agreed reasonably well with the experimental results. It is a tendency that smaller inclusions are associated with longer fatigue life. The results demonstrated that the portions of life attributed to subsurface crack initiation between 107 and 109 cycles are >99%.  相似文献   

10.
铁素体-珠光体型非调质钢的高周疲劳破坏行为   总被引:1,自引:0,他引:1  
研究了三种碳和钒含量不同的铁素体-珠光型非调质钢的高周疲劳破坏行为,并与调质钢进行了对比.结果表明,铁素体-珠光体型非调质钢的高周疲劳性能与其微观组织特征有关.提高铁素体相硬度,其疲劳极限及疲劳极限比均提高,疲劳极限比最高可达0.60,远高于调质钢的0.50;热轧态粗大的网状铁素体-珠光体组织的疲劳性能较差,低于同等强度水平的高温回火马氏体组织。铁素体-珠光体型非调质钢疲劳破坏机制不同于调质钢,其疲劳裂纹基本上萌生于试样表面的铁素体/珠光体边界,并优先沿着铁素体/珠光体边界扩展;对于同等强度水平的调质钢,不存在像铁素体那样的软相,因而易在试样表层粗大的夹杂物处萌生疲劳裂纹.  相似文献   

11.
Abstract

In order to analyse the effect of hydrogen on very high cycle fatigue properties, hydrogen was precharged into two high strength steels. The applied stress intensity factor range at the periphery of inclusions before and after being precharged is approximately proportional to the cubic root of inclusion size. In addition, the applied stress intensity factor range at the periphery of inclusions after being precharged was lower compared with uncharged specimens. The additional stress intensity factor range generated by hydrogen ΔKH is raised after the hydrogen was precharged. A simple prediction equation of SN curve was proposed by introducing the hydrogen influence factor. The proposed prediction equation can reasonably describe the SN curves for precharged specimens.  相似文献   

12.
Gigacycle fatigue properties of 1800 MPa class spring steels   总被引:2,自引:0,他引:2  
Fatigue tests up to 108 cycles were carried out for two spring steels (Heats A and D1) and one valve spring steel (Heat F) with tensile strength, σ B, of 1720, 1725 and 1764 MPa, respectively. The size and composition of inclusions in Heats Dl and F were controlled. The surface‐type fracture occurred at shorter lives below 106 cycles, while the fish‐eye‐type fracture occurred at longer lives. The fatigue limit, σ W, at 108 cycles was 640 MPa for Heats A and D1 and 700 MPa for Heat F. Al2O3 inclusions for Heat A and both TiN inclusions and matrix cracks, i.e. internal facets, for Heat F were observed at the fish‐eye‐type fracture sites, while only matrix cracks were observed for Heat Dl. ODA, i.e. optically dark area, which is considered to be related to hydrogen effects, were formed around Al2O3 and TiN inclusions. Fatigue tests were also conducted after specimens were heated up to 573 K in high vacuum of 2 × 10–6 Pa. The heat treatment eliminated matrix cracks for Heat D1 and the fatigue limit at 108 cycles recovered to the estimated value of 920 MPa from the equation σ w= 0.53 σ B for the surface fracture. These results suggest that inclusions control and hydrogen influence the gigacycle fatigue properties for these high strength steels. In addition, it is expected that the creation of a martensite structure with a high resistance to hydrogen effects in the inclusion‐controlled steel could achieve the higher fatigue limit estimated for the surface‐type fracture.  相似文献   

13.
The fatigue fracture behavior of four ultrahigh strength steels with different melting processes and therefore different inclusion sizes were studied by using a rotating bar two-point bending fatigue machine in the high-cycle regime up to 107 cycles of loading. The fracture surfaces were observed by field emission scanning electron microscopy (FESEM). It was found that the size of inclusion has significant effect on the fatigue behavior. For AtSI 4340 steel in which the inclusion size is smaller than 5.5 μm, all the fatigue cracks except one did not initiated from inclusion but from specimen surface and conventional S-N curve exists. For 65Si2MnWE and Aermet 100 steels in which the average inclusion sizes are 12.2 and 14.9 μm, respectively, fatigue cracks initiated from inclusions at lower stress amplitudes and stepwise S-N curves were observed. The S-N curve displays a continuous decline and fatigue failures originated from large oxide inclusion for 60Si2CrVA steel in which the average inclusion size is 44.4 pro. In the case of internal inclusion-induced fractures at cycles beyond about 1×10^6 for 65Si2MnWE and 60Si2CrVA steels, inclusion was always found inside the fish-eye and a granular bright facet (GBF) was observed in the vicinity around the inclusion. The GBF sizes increase with increasing the number of cycles to failure Nf in the long-life regime. The values of stress intensity factor range at crack initiation site for the GBF are almost constant with Nf, and are almost equal to that for the surface inclusion and the internal inclusion at cycles lower than about 1×10^6. Neither fish-eye nor GBF was observed for Aermet 100 steel in the present study.  相似文献   

14.
Research of material giga-cycle fatigue shows that fatigue failure is caused by a comprehensive effect of the competition between surface defect and internal inclusion, and the competition is more significant with high strength steal FV520B-I. A clear understanding of fatigue failure mechanism can improve the accuracy of the fatigue life prediction for FV520B-I. There is currently no available fatigue-life model that describes the competition mechanism of giga cycle behavior for FV520B-I. In this paper, ultrasonic fatigue experiment is presented, which revealed the existence of the competition during the giga-cycle process. The giga-fatigue life prediction models for FV520B-I are established with the consideration of surface defect and internal inclusion. Based on fracture mechanics, the surface roughness is correlated to surface defect. The competition analysis is carried out on the basics of fatigue strength to obtain the critical defect value. The critical defect value is the direct criterion in practical engineering and the primary factor of final failure is determined by comparing the actual defect with the critical value. Then the competitive giga-fatigue model for FV520B-I is established and the actual fatigue life is calculated by substituting the actual defect value into the corresponding fatigue life model.  相似文献   

15.
Very high cycle fatigue (VHCF) properties were compared between two types of specimens: enlarged specimens and our standard specimens. Fatigue tests were conducted by ultrasonic fatigue testing; the material used was commercial spring steel. All tests ended in internal fracture, with large-size effects observed, i.e., the enlarged specimens showed lower VHCF strength than the standard specimens. Most of the internal fracture origins were oxide-type inclusions that were larger in the enlarged specimens than in the standard specimens, indicating the size effect to be caused by the difference in oxide-type inclusion sizes at the origins of internal fractures. The large-size effect strongly urges the use of large specimens when conducting VHCF tests on high-strength steel. Moreover, the large-size effect implies that fatigue strength cannot in this case be determined using the conventional S-N curve approach, since the S-N curve depends on the specimen size. The evaluation of the VHCF strength thus needs two steps: an estimation of the maximal inclusion size, followed by an estimation of the VHCF strength based on the maximal inclusion size.  相似文献   

16.
A computational strategy is developed to characterize the driving force for fatigue crack nucleation at subsurface primary inclusions in carburized and shot peened C61® martensitic gear steels. Experimental investigation revealed minimum fatigue strength to be controlled by subsurface fatigue crack nucleation at inclusion clusters under cyclic bending. An algorithm is presented to simulate residual stress distribution induced through the shot peening process following carburization and tempering. A methodology is developed to analyze potency of fatigue crack nucleation at subsurface inclusions. Rate-independent 3D finite element analyses are performed to evaluate plastic deformation during processing and service. The specimen is subjected to reversed bending stress cycles with R = 0.05, representative of loading on a gear tooth. The matrix is modeled as an elastic–plastic material with pure nonlinear kinematic hardening. The inclusions are modeled as isotropic, linear elastic. Idealized inclusion geometries (ellipsoidal) are considered to study the fatigue crack nucleation potency at various subsurface depths. Three distinct types of second-phase particles (perfectly bonded, partially debonded, and cracked) are analyzed. Parametric studies quantify the effects of inclusion size, orientation and clustering on subsurface crack nucleation in the high cycle fatigue (HCF) or very high cycle fatigue (VHCF) regimes. The nonlocal average values of maximum plastic shear strain amplitude and Fatemi–Socie (FS) parameter calculated in the proximity of the inclusions are considered as the primary driving force parameters for fatigue crack nucleation and microstructurally small crack growth. The simulations indicate a strong propensity for crack nucleation at subsurface depths in agreement with experiments in which fatigue cracks nucleated at inclusion clusters, still in the compressive residual stress field. It is observed that the gradient from the surface of residual stress distribution, bending stress, and carburized material properties play a pivotal role in fatigue crack nucleation and small crack growth at subsurface primary inclusions. The fatigue potency of inclusion clusters is greatly increased by prior interfacial damage during processing.  相似文献   

17.
Fatigue properties of two Al-containing steels have been investigated by rotating bending fatigue tests. Results show that the fatigue limits (the fatigue strength at 107 cycles) were improved remarkably by plasma nitriding due to the high hardness of 1000 Hv and compressive stress of 400 MPa in the nitrided layer. Scanning electron microscopic observations show that after nitriding the fatigue crack initiation sites moved from the surface flaws or near-surface matrix into the AlN inclusions at around the case-core interface. Degassing treatment can increase the fatigue limit because it prevented fatigue crack initiation at AlN inclusions due to the reduced [N] contents and refined inclusion size.  相似文献   

18.
贝/马复相钢具有较低的夹杂物敏感性,组织因素对其超高周疲劳性能具有显著影响。组织因素引起的"非夹杂起裂"成为贝/马复相钢重要的裂纹萌生方式,贝/马复相组织的类型、形态、均匀性、细化程度等都对钢的超高周疲劳性能具有显著影响。讨论了组织纯净化、组织细化和残余奥氏体对贝/马复相钢超高周疲劳性能及其裂纹萌生机制的影响,在合理控制夹杂物水平的基础上,调控复相组织,可以在1 600MPa级别的贝/马复相钢中,获得超高周(循环周次大于108)疲劳强度达到900MPa的优异性能。同时对非夹杂起裂机理进行了初步探讨。  相似文献   

19.
通过滚动接触疲劳试验方法,研究了两种渗碳齿轮钢的接触疲劳性能.结果发现,渗碳齿轮钢接触疲劳试样失效方式主要为渗碳层的点蚀和剥落.氧含量较低的Nb微合金化齿轮钢(含0.04%的Nb)中氧化物夹杂数量少、尺寸小,接触疲劳裂纹起裂较难;同时,Nb微合金化齿轮钢渗碳层晶粒尺寸小、硬度高,提高了疲劳裂纹萌生及扩展阻力,导致Nb微合金化后,齿轮钢的接触疲劳寿命大幅度提高.  相似文献   

20.
High-cycle fatigue properties of cold-drawn twinning-induced plasticity (TWIP) steel, a favored candidate for replacing fully pearlitic (FP) steels in wire applications, were investigated. The high-cycle fatigue tests were conducted on cold-drawn TWIP and FP steels that had comparable ultimate tensile strength for comparison. Fatigue strength of both TWIP and FP steels increased with the tensile strength, but the TWIP steel cold-drawn to a tensile strength of 1.5 GPa exhibited a very low fatigue ratio (a ratio of fatigue strength to tensile strength) which deviated far from the predicted linear relationship. Fracture surface analysis showed that crack initiation mainly occurred at the ferrite matrix in FP steels, while either at grain or twin boundaries in TWIP steels where a large density of dislocations piled up during cold drawing. In the case of TWIP steels, the presence of inclusions at grain boundaries led to high local stress concentration and caused early intergranular fatigue cracking as notch sensitivity increased with tensile strength. Subsequent annealing after cold-drawing effectively increased fatigue strength of TWIP steels. It was suggested that TWIP steel revealing both high tensile strength and excellent high cycle fatigue strength could be a promising alternative for replacing conventional FP steels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号