首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The fracture behavior of Al2O3/SiC nanocomposites has been studied as a function of the SiC volume fraction and compared to that of the pure Al2O3 matrix. A pronounced strengthening effect was only observed for materials with low SiC content (i.e., ≤10 vol%) although no evidence of concurrent toughening was found. Assessment of near-tip crack opening displacement (COD) could not experimentally substantiate significant occurrence of an elastic crack-bridging mechanism, in contrast with a recently proposed literature model. Quantitative fractography analysis indicated that transgranular crack propagation in Al2O3/SiC nanocomposites depends on the location of the SiC dispersoids within the matrix texture; the higher the fraction of transgranularly located dispersoids, the more transgranular the fracture mode. Experimental evidence of remarkably high residual stresses arising from thermal dilatation mismatch (upon cooling) between Al2O3 and SiC phases were obtained by fluorescence and Raman spectroscopy. A strengthening mechanism is invoked which merely arises from residual stress through strengthening of Al2O3 grain boundaries.  相似文献   

2.
Hard lead zirconate titanate (PZT) and PZT/Al2O3 composites were prepared and the alternating-electric-field-induced crack growth behavior of a precrack above the coercive field was evaluated via optical and scanning electron microscopy. The crack extension in the 1.0 vol% Al2O3 composite was significantly smaller than that in monolithic PZT and the 0.5 vol% Al2O3 composite. Secondary-phase Al2O3 dispersoids were found both at grain boundaries and within grains in the composites. A large number of dispersoids were observed at the grain boundaries in the 1.0 vol% Al2O3 composite. It appears that the Al2O3 dispersoids reinforce the grain boundaries of the PZT matrix as well as act as effective pins against microcrack propagation.  相似文献   

3.
Composites of Al2O3 and Y2O3 partially-stabilized ZrO2 were isostatically hot-pressed using submicrometer powders as the starting material. The addition of Al2O3 resulted in a large increase in bending strength. The average bending strength for a composite containing 20 wt% Al2O3 was 2400 MPa, and its fracture toughness was 17 MN·w−3/2  相似文献   

4.
The effects of Ni3Al and Al2O3 additions on the mechanical properties of hydroxyapatite (HAp) were investigated. The addition of Ni3Al particles increased the strength as well as the fracture toughness of HAp. However, the improvements in the properties were limited because of the formation of microcracks around the metal particles. The microcracks were formed because of the large difference in the coefficients of thermal expansion between HAp and Ni3Al, and because of the relatively large size of Ni3Al particles (∼20 µm). The addition of submicrometer Al2O3 powder was also effective in increasing the mechanical properties. The flexural strength and the fracture toughness were increased from about 100 MPa and 0.7 MPam1/2, respectively, to 200 MPa and 1.5 MPam1/2 by the addition of 20 vol% Al2O3. When Ni3Al and Al2O3 were added together, the fracture toughness was further increased to 2.3 MPam1/2. This increase in the fracture toughness was attributed to the synergistic effect of matrix strengthening and crack interactions with the metal particles.  相似文献   

5.
Strength degradation and crack propagation in Al2O3 are shown to depend on the initial strength and grain size of the material. The strengths of single-crystal sapphire and polycrystalline Al2O3 specimens with grain sizes of 10, 34, and 40 μ m decreased discontinuously at the critical quenching temperature. In contrast, the strength of polycrystalline Al2O3 with a grain size of 85 μm decreased gradually as the quenching temperature increased. The strength retained after thermal shock and the extent of crack propagation decrease with increasing initial strength and grain size, respectively, in Al2O3.  相似文献   

6.
Solubility of NiO in Al2O3 was determined by electron probe microanalysisy A diffusion couple method was used by coupling an NiO-doped Al2O3 polycrystal to a pure single crystal of Al2O3. The solubility of NiO in Al2O3 in air was 230 wt ppm (157 at. ppm of cations) and 170 wt ppm (116 at. ppm) at 2073 and 1973 K, respectively. The solubility of NiO in Al2O3 obtained in this work was compared with our previous work of the solubility of MgO in Al2o3.  相似文献   

7.
The mechanical properties of the Al2O3-NiAl system are investigated in the present study. Specimens containing 0 to 100 vol% NiAl in Al2O3 were prepared by hot pressing. Both the strength and toughness of the Al2O3-NiAl composites are higher than the values predicted by the rule of mixtures. The grain growth of Al2O3 and NiAl in the composites is constrained by each component. The increase in strength is thus partly attributed to microstructural refinement. The toughness enhancement is contributed by a combination of crack deflection and crack bridging.  相似文献   

8.
Different Fe-Al2O3 and FeAl-Al2O3 composites with metallic contents up to 30 vol% have been fabricated via reaction processing of Al2O3, Fe, and Al mixtures. Low Al contents (<∼10 vol%) within the starting mixture lead to composites consisting of Fe embedded in an Al2O3 matrix, whereas aluminide-containing Al2O3 composites result from powder mixtures with higher Al contents. In both cases, densification up to 98% TD can be achieved by pressureless sintering in inert atmosphere at moderate temperatures (1450°-1500°C). The proposed reaction sintering mechanism includes the reduction of native oxide layers on the surface of the Fe particles by Al and, in the case of mixtures with high Al contents, aluminide formation followed by sintering of the composites. Density and bending strengths of the reaction-sintered composites depend strongly on the Al content of the starting mixture. In the case of samples containing elemental Fe, crack path observations indicate the potential for an increase of fracture toughness, even at room temperature, by crack bridging of the ductile Fe inclusions.  相似文献   

9.
Wet milling of Al2O3-aluminide alloy (3A) precursor powders in acetone has been investigated by milling Fe/Al/Al2O3 and Fe2O3/Al/Al2O3 powder mixtures. The influence of the milling process on the physical and chemical properties of the milled powders has been studied. Particle refinement and homogenization were found not to play a dominant role, whereas plastic deformation of the metal particles leads to the formation of dislocations and a highly disarranged polycrystalline structure. Although no chemical reactions among the powder components in Fe2O3/Al/Al2O3 powder mixtures were observed, the formation of a nanocrystalline, ordered intermetallic FeAl phase in Fe/Al/Al2O3 powder mixtures caused by mechanical alloying was detected. Chemical reactions of Fe and Al particle surfaces with the atmosphere and the milling media lead to the formation of highly porous hydroxides on the particle surfaces. Hence the specific surface area of the powders increases, while the powder density decreases during milling. The fraction of Fe oxidized during milling was determined to be 0.13. The fraction of Al oxidized during milling strongly depends on the metal content of the powder mixture. It ranges between 0.4 and 0.8.  相似文献   

10.
Alumina/yttria-stablized tetragonal zirconia (Al2O3/TZ3Y) multilayer composites with strong interfaces and containing residual stresses were produced by electrophoretic deposition. As-synthesized and Vickers-indented samples with different layering designs have been tested in bending (up to 1300°C) to experimentally define conditions for crack deflection and flaw tolerance. The compressive residual stress in the Al2O3 layers (ςr) is a function of layer thickness ( t ). It was found that the parameter ςr2 t is an effective indicator of the fracture behavior, as predicted by strain energy release calculations. With decreasing ςr2 t , the fracture followed a sequence from spontaneous delamination, multistage fracture with extensive crack deflection, to catastrophic failure with, and finally without, deflection steps. Decrease of ςr with increasing test temperature causes changes in fracture behavior which correspond to the room-temperature transitions of ςr2 t .  相似文献   

11.
Fracture energy and strength were determined for three series within a sodium borosilicate glass-Al2O3 dispersed composite system. The average particle sizes of the Al2O3 dispersions were
, and
μm. Within each series, composites containing 0.10, 0.25, and 0.40 vol fractions of the Al2O3 dispersed phase were vacuum hot-pressed. The fracture energy was determined at 77°K with the double cantilever specimen configuration. Strength was measured by a 4-point flexural test. A significant increase in fracture energy was observed (up to 5 times the fracture energy of the glass without second-phase dispersion). The fracture energy depended on the interparticle spacing and average particle size of the Al2O3 dispersion. These results could best be explained by a previously proposed model for the interaction of a crack front with a second-phase dispersion. Surface roughness also contributed to the increased fracture energy. Some composites were strengthened significantly relative to the glass without a dispersion. Calculation of the crack size showed that the Al2O3 dispersion increased the crack size of the glass by ∼1 to 3 times the average particle size of the Al2O3 dispersion. Thus, the dispersion increased both the fracture energy and the crack size. These opposing parameters ultimately determined the strength behavior of these composites.  相似文献   

12.
The fracture toughness of 3 mol% Y2O3-ZrO2 (3Y-PSZ) composites containing 10–30 vol% Al2O3 with different particle sizes was investigated. It was found that Al2O3 dispersion of up to 30 vol% increased the fracture toughness by 17% to 30%, and the toughness increase was more remarkable in the composite dispersed with Al2O3 particles of larger sizes. By combining the effects of the dispersion toughening and phase transformation toughening, the toughness change in the present materials was theoretically predicted, which was in good agreement with the experimental data.  相似文献   

13.
B6O is a possible candidate of superhard materials with a hardness of 45 GPa measured on single crystals. Up to now, densification of these materials was only possible at high pressure. However, recently it was found that Al2O3 can be utilized as an effective sintering additive, similar to the addition of Y2O3/Al2O3 that was used in this work. The densification behavior of the material as a function of applied pressure, its microstructure evolution, and the resulting mechanical properties were investigated. A strong dependence of the densification with increasing pressure was found. The material revealed characteristic triple junctions filled with amorphous residue composed of B2O3, Al2O3, and Y2O3, while no amorphous grain-boundary films were observed along internal interfaces. Mechanical testing revealed on average a hardness of 33 GPa, a fracture toughness of 4 MPa·m1/2, and a strength value of 520 MPa.  相似文献   

14.
A tentative phase diagram for the system Al203-Nd2O3 is presented. Three compounds were obtained: a β -A12O3-type compound, the perovskite NdAlO3, and Nd4Al2O9. The perovskite melts congruently (mp 2090°C), and the two other compounds exhibit incongruent melting behavior: β -Nd/Al2O3, mp 1900°C; Nd4Al2O9, mp 1905°C. Two eutectics exist with the following compositions and melting points: 80 mol% Al2O3, 1750°C; 23 mol% Al2O3,1800°C. Nd4Al2O9 decomposes in the solid state at 1780°C.  相似文献   

15.
Composites of β-Ce2O3·11Al2O3 and tetragonal ZrO2 were fabricated by a reductive atmosphere sintering of mixed powders of CeO2, ZrO2 (2 mol% Y2O3), and Al2O3. The composites had microstructures composed of elongated grains of β-Ce2O3·11Al2O3 in a Y-TZP matrix. The β-Ce2O3·11Al2O3 decomposed to α-Al2O3 and CeO2 by annealing at 1500°C for 1 h in oxygen. The elongated single grain of β-Ce2O3·11Al2O3 divided into several grains of α-Al2O3 and ZrO2 doped with Y2O3 and CeO2. High-temperature bending strength of the oxygen-annealed α-Al2O3 composite was comparable to the β-Ce2O3·11Al2O3 composite before annealing.  相似文献   

16.
Al2O3/SiC ceramic nanocomposites were fabricated from nanocrystalline Al2O3 (10 nm in diameter) and SiC (15 nm in diameter) powders, and a theoretical model of intragranular particle residual stress strengthening was investigated. The SiC nanoparticles in the Al2O3 grains create a normal compressive stress at the grain boundaries and a tangential tensile stress in the Al2O3 grains, resulting in the "strengthening" of the grain boundaries and "weakening" of the grains. The model gives a good explanation of the experimental results of the authors and others which are difficult to be explained by the existing strengthening models, i.e. the maximum strength is normally achieved at about 5 vol% of SiC particles in the Al2O3–SiC ceramic nanocomposites. According to the model, there exists an optimum amount of SiC for strengthening, below which the grain boundaries are not fully "strengthened" and the fracture is mainly intergranular, above which the grains are "weakened" too much and the fracture is mainly transgranular, and at which the fracture is a mixture of intergranular and transgranular.  相似文献   

17.
Fracture toughness of ZrO2-toughened alumina could he increased by macroscopic interfaces, such as those existing in laminated composites. In this work, tape casting was used to produce A/A or A/B laminates, where A and B can be Al2O3, Al2O3/5 vol% ZrO2, and Al2O3/l0 vol% ZrO2. An increase of toughness is observed, even in the Al2O3/Al2O3 laminates.  相似文献   

18.
Microstructure, phase stability, and mechanical properties of CeO2-partially-stabilized zirconia (12 mol% Ce-TZP) containing 10 wt% Al2O3 and 1.5 wt% MnO were studied in relation to the base Ce-TZP and the Ce-TZP/Al2O3 composite without MnO. The MnO reacted with both CeO2 and Al2O3 to form a new phase of approximate composition CeMnAl11O19. The reacted phase had a magnetoplumbite structure and formed elongated, needlelike crystals. The MnO-doped Ce-TZP/Al2O3 composites sintered at an optimum temperature of 1550°C exhibited high strength (650 MPa in four-point bending) and rising crack-growth-resistance behavior, with fracture toughness increasing from 7.6 to 10.3 MPa.In12 in compact tension tests. These improved mechanical properties were associated with relatively high tetragonal-to-monoclinic transformation temperature ( M s=−42°C) at small grain size (2.5 μm), significant transformation plasticity in mechanical tests (bending, uniaxial tension, and uniaxial compression) and transformation zones at crack tips in compact tension specimens. The transformation yield stress, zone size, and fracture toughness were sensitive to the sintering temperature varied in the range 1500° to 1600°C. Analysis of the transformation zones using Raman microprobe spectroscopy and calculation of zone shielding for the observed zones indicated that a large fraction of the fracture toughness (∼70%) was derived from transformation toughening.  相似文献   

19.
Liquidus phase equilibrium data are presented for the system Al2O3-Cr2O3-SiO2. The liquidus diagram is dominated by a large, high-temperature, two-liquid region overlying the primary phase field of corundum solid solution. Other important features are a narrow field for mullite solid solution, a very small cristobalite field, and a ternary eutectic at 1580°C. The eutectic liquid (6Al2O3-ICr2O3-93SiO2) coexists with a mullite solid solution (61Al2O3-10Cr2O3-29SiO2), a corundum solid solution (19Al2O3-81Cr2O3), and cristobalite (SO2). Diagrams are presented to show courses of fractional crystallization, courses of equilibrium crystallization, and phase relations on isothermal planes at 1800°, 1700°, and 1575°C. Tie lines were sketched to indicate the composition of coexisting mullite and corundum solid solution phases.  相似文献   

20.
ZrO2–Al2O3 nanocomposite particles were synthesized by coating nano-ZrO2 particles on the surface of Al2O3 particles via the layer-by-layer (LBL) method. Polyacrylic acid (PAA) adsorption successfully modified the Al2O3 surface charge. Multilayer coating was successfully implemented, which was characterized by ξ potential, particle size. X-ray diffraction patterns showed that the content of ZrO2 in the final powders could be well controlled by the LBL method. The powders coated with three layers of nano-ZrO2 particles, which contained about 12 wt% ZrO2, were compacted by dry press and cold isostatically pressed methods. After sintering the compact at 1450°C for 2 h under atmosphere, a sintered body with a low pore microstructure was obtained. Scanning electron microscopy micrographs of the sintered body indicated that ZrO2 was well dispersed in the Al2O3 matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号