首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
唐宇  潘英才  李国元 《焊接学报》2014,35(1):95-100
研究了纳米锑掺杂对回流焊过程中Sn-3.0Ag-0.5Cu-xSb(x=0,0.2%,1.0%和2.0%)焊点界面金属间化合物(IMC)生长动力学的影响.借助扫描电镜(SEM)观察了焊点的微观结构,利用X射线能谱分析(EDX)及X射线衍射谱仪(XRD)确定了IMC的相和成分.结果表明,部分纳米锑颗粒溶解在富锡相中形成SnSb二元相,部分纳米锑颗粒溶解在Ag3Sn相中形成Ag3Sb相,剩余部分沉降在界面Cu6Sn5金属间化合物层表面.随着纳米锑含量的增加,IMC厚度减小.当纳米锑的含量为1.0%时,IMC厚度最小.通过曲线拟合,确定出界面IMC层生长指数和扩散系数.结果表明,IMC层生长指数和扩散系数均随着纳米锑含量的增加而减小.当纳米锑的含量为1.0%,IMC层生长指数和扩散系数均有最小值,分别为0.326和10.31×10-10 cm2/s.由热力学相图和吸附理论可知,Sn,Sb元素之间易形成SnSb化合物,引起Sn元素的活性、Cu-Sn金属间化合物形成的驱动力和界面自由能下降,从而导致Cu6Sn5金属间化合物生长速率下降,抑制IMC生长.  相似文献   

2.
为了改善Sn-58Bi低温钎料的性能,通过在Sn-58Bi低温钎料中添加质量分数为0.1%的纳米Ti颗粒制备了Sn-58Bi-0.1Ti纳米增强复合钎料。在本文中,研究了纳米Ti颗粒的添加对-55~125 oC热循环过程中Sn-58Bi/Cu焊点的界面金属间化合物(IMC)生长行为的影响。研究结果表明:回流焊后,在Sn-58Bi/Cu焊点和Sn-58Bi-0.1Ti/Cu焊点的界面处都形成一层扇贝状的Cu6Sn5 IMC层。在热循环300次后,在Cu6Sn5/Cu界面处形成了一层Cu3Sn IMC。Sn-58Bi/Cu焊点和Sn-58Bi-0.1Ti/Cu焊点的IMC层厚度均和热循环时间的平方根呈线性关系。但是,Sn-58Bi-0.1Ti/Cu焊点的IMC层厚度明显低于Sn-58B/Cu焊点,这表明纳米Ti颗粒的添加能有效抑制热循环过程中界面IMC的过度生长。另外计算了这两种焊点的IMC层扩散系数,结果发现Sn-58Bi-0.1Ti/Cu焊点的IMC层扩散系数(整体IMC、Cu6Sn5和Cu3Sn IMC)明显比Sn-58Bi/Cu焊点小,这在一定程度上解释了Ti纳米颗粒对界面IMC层的抑制作用。  相似文献   

3.
通过对不同钎料层厚度(15~50μm)的Cu/SAC305/Cu三明治结构焊缝进行高温时效处理,研究在高温时效过程中钎料层厚度对IMC生长行为的影响.结果表明,钎料层厚度对高温时效过程中的界面元素固态扩散的影响显著.钎料层厚度越小,在时效过程中界面处越有利于Cu3Sn的生长,160℃时效相同时间后Cu6Sn5层与Cu3Sn层的厚度比越小;时效过程中IMC层(Cu6Sn5层+Cu3Sn层)的生长速率随着钎料层厚度的减小也呈现减小的趋势;扩散系数受钎料层尺寸的影响,扩散系数与钎料层厚度之间近似满足抛物线关系.  相似文献   

4.
炭阴极在铝电解槽中受熔盐和铝液腐蚀而影响寿命,而TiB2涂层是铝电解槽理想的阴极材料。本文以石墨为基体,在KF-KCl-K2TiF6-KBF4熔盐中以0.4-0.7A.cm-2电流密度、700-800℃温度电沉积TiB2涂层,通过XRD衍射仪、SEM-EDS、表面粗糙度测量仪及附着力测试仪对不同电流密度和温度下制备的涂层进行表征。结果表明:在石墨基体上可以得到均匀连贯的TiB2涂层;增大电流密度、降低电解温度可以细化涂层晶粒,提高涂层致密性;在0.6 A.cm-2、750℃最优电沉积条件下制得的TiB2涂层的厚度为229 μm,择优取向为<110>,表面粗糙度为14.85 μm,涂层与石墨基体的结合力为6.39 MPa。  相似文献   

5.
本文对采用磁控溅射先驱丝法制备的SiCf/Ti-60复合材料进行不同温度下长时间热暴露实验,分析了热等静压态和热暴露态复合材料界面区结构稳定性及元素扩散规律。研究结果表明,界面反应层主要产物为TiC,纤维中C、Si元素和基体中Ti及其它合金元素进行互扩散;C元素扩散速率较快,在界面处和基体内形成TiC,基体中的TiC主要集中分布在α相晶界处。SiCf/Ti-60复合材料反应层长大受扩散控制并遵循抛物线定律,界面反应层长大指数因子为2.27×10-4 m/s1/2,界面反应层长大激活能为118 kJ/mol。  相似文献   

6.
通过热模拟压缩实验研究了GH2907合金在变形温度为950~1100℃、应变速率为0.01~10s-1、变形量为60%条件下的热变形行为,流变应力随着变形温度的升高或应变速率的降低而显著降低;根据Arrhenius方程和Zener-Hollomon参数,计算了热变形激活能Q,建立了GH2907合金的热变形本构方程;根据动态材料模型,确定了GH2907合金在不同应变下的功率耗散图,功率耗散效率η较高的区域位于温度为1050~1100℃,应变速率为0.01~0.03s-1范围,在该变形区域内组织发生了明显的动态再结晶现象;基于Preased失稳判据,绘制了GH2907合金在不同应变下的热加工图,流变失稳区位于高温高应变速率区域,即温度为970~1100℃,应变速率为0.6~10s-1范围,在该变形区域内动态再结晶晶粒沿着绝热剪切带和局部流动分布。根据GH2907合金热加工图及微观组织分析得到适宜的加工区域是温度为1050~1100℃,应变速率为0.01~0.03s-1范围。  相似文献   

7.
将冷轧Ti/Al层状复合材料在675~750 ℃下进行不同时间的退火处理,退火过程中钛和铝都保持过剩,研究了Ti/Al层状复合材料的界面微观组织演变。结果表明:Ti和Al的界面层由2个亚层组成,其中一个为紧密的TiAl3亚层,其微观结构为紧密的TiAl3层,其中分布着随机取向的充满Al的裂纹,另一个为颗粒状的TiAl3亚层,其微观组织结构是颗粒状的TiAl3分布在Al基体中。在不同的退火温度和时间条件下,紧密TiAl3亚层的厚度几乎没有变化,但是颗粒状亚层的厚度随着退火温度及时间的增加而增加;另外,界面层中的TiAl3颗粒的体积分数在不同的温度下均随着退火时间的延长而下降。因此提出了反应扩散模型来描述界面层的形成机理,在此模型中,TiAl3相是化学反应和扩散的结果,并且也考虑了TiAl3相的溶解。计算结果表明TiAl3相的形成与生长由化学反应控制,其等效厚度与退火时间之间遵循线性规律,这主要是因为Ti和Al原子能够快速地通过紧密的薄TiAl3亚层。  相似文献   

8.
2205双相不锈钢的高温变形行为   总被引:4,自引:0,他引:4  
利用Gleeble-3800热力模拟试验机在温度为1223-1523 K, 应变速率为0.01-10 s-1的条件下进行了2205双相不锈钢热压缩变形实验, 测定了真应力-真应变曲线, 分析了变形组织. 结果表明: 奥氏体分布在随温度升高而含量增加的铁素体基体上, 升高温度和降低应变速率可促进奥氏体发生动态再结晶. 基于热变形方程计算得到了热变形激活能Q=451 kJ/mol, 表观应力指数n=4.026. 真应力-真应变曲线存在的“类屈服平台”效应与Z参数有关, 随着Z参数的减小而逐渐增强. 基于简化应力函数的ln Z与σp之间的线性关系在临界点(ln Zc=38.18)发生偏移;峰值应力与温度及应变速率的关系可表示为: σp=20.6lnε+1118002/T-266.8(ln Z>38.18); σp=9.1lnε+493874/T-701.9(ln Z≦38.18)  相似文献   

9.
研究了转速对铝/镁搅拌摩擦焊接头金属间化合物和低熔点共晶的影响,并用电子背散射衍射表征了铝侧和镁侧界面微观结构。结果表明,当采用375 r/min的低转速时,镁侧界面上部出现由Mg固溶体和Al12Mg17相组成的共晶层,平均厚度为38.83 μm。在镁侧界面上部还发现一层厚度为12.3 μm的连续柱状Al3Mg2层,垂直于Al3Mg2层与共晶层的边界。在镁侧界面的中部和底部,只有Al3Mg2层和Al12Mg17层,其厚度沿厚度方向从上到下依次减小。此外,铝侧和镁侧界面的Al3Mg2层具有较高的平均晶粒取向差,这为铝和镁原子间的扩散提供了一条途径。当转速为600 r/min时,Mg固溶体与Al12Mg17相组成的共晶层沿厚度方向分布在镁侧界面上,共晶层厚度较低转速(375 r/min)时显著增加。镁侧界面上部的Al3Mg2层和共晶层的平均厚度分别为32.89和68.92 μm。最后,由转速引起的应变速率对金属间化合物的生长起着重要作用。  相似文献   

10.
在变形温度600~950℃,应变速率0.001~10s-1条件下,采用Thermecmaster-Z型热加工模拟试验机对Ti60合金进行等温恒应变速率压缩实验。通过分析流动应力行为,计算应变速率敏感指数m和应变硬化指数n,并综合考虑加工图和变形微观组织来研究该合金的热变形行为,得到优化的工艺参数范围。研究结果表明,Ti60合金的流动应力-应变曲线在不同热力参数条件下分别呈现流动稳态型和流动软化型。应变速率敏感指数m随着变形温度升高和应变速率降低而增大。应变硬化指数n随着变形温度升高而减小;随着应变速率的增加在低应变速率(0.001~0.1s-1)区间增大,在高应变速率(1~10s-1)区间减小;随着应变的增加在高温段(800~950℃)的低应变速率(0.001~0.1s-1)区间较缓慢地减小,在高温段(800~950℃)的高应变速率(1~10s-1)区间以及低温段(600~750℃)的所有应变速率(0.001~10s-1)区间较明显地减小。Ti60合金存在两个功率耗散效率峰值区域,其对应的热力参数窗口分别为温度725~875℃,应变速率≤0.003s-1和温度875~938℃,应变速率≤0.04s-1。从流动应力行为、应变速率敏感指数m、应变硬化指数n以及加工图综合考虑,Ti60合金的最佳热加工工艺参数为:温度800~875℃,应变速率0.001~0.003s-1,或温度875~938℃,应变速率0.001~0.04s-1。  相似文献   

11.
《Acta Materialia》2007,55(16):5592-5600
The dissolution kinetics of nickel in liquid aluminum at temperatures in the range 767–867 °C were investigated under the influence of a DC current. The current had a marked effect on the dissolution rate constant. Correspondingly, the application of the current significantly decreased the activation energy of dissolution. The direction of the DC current was shown to have an effect on dissolution. When the electronic flow was in the direction of dissolution, a further increase in dissolution was observed and attributed to electromigration. Calculations of the effective diffusion coefficient, Deff, of Ni through one of the two intermetallic layers, Al3Ni2, were made for different current densities and temperatures. From measured electromigration enhanced flux, the effective charge, z1, on the diffusing Ni was calculated.  相似文献   

12.
The polarity effect of electromigration on the interfacial reactions of micro ball grid array (μBGA) solder joints was studied in terms of microstructural evolution. A dummy μBGA package with the same pair of solder joints was used to obtain reproducible results for a practical application. The μBGA package with Ni(P)/SnPb/Ni(P) structure showed a polarity effect on intermetallic compound (IMC) formation after stress by a current density of 3.0 × 103 A cm?2 at 120 °C, compared to the no-current case. Electric current enhanced the growth of Ni3Sn4 at the anode and retarded it at the cathode because of the change in Sn diffusion induced by electromigration. The IMC growth at the anode was about one order of magnitude faster than that at cathode. The growth of IMC at the anode had a parabolic dependence on time since the square of thickness of IMC increases linearly with time. The real μBGA package has unique and more complicated geometry compared to ordinary diffusion couples. So not only the polarity growth of IMC but also the fast dissolution of Cu and Ni at specific positions was found with the μBGA package. The unique geometry of μBGA solder joints caused heat generation at the upside interfaces due to Joule heating. Because of the heat generation and the high interfacial energy at the triple point of upside interfaces, the electroless Ni(P) finishes and Cu trace are consumed rapidly in the region where the current is crowded. Thus electromigration induced the rapid dissolution of Ni and Cu into solder and then formed (Cu,Ni)6Sn5 at the triple point of the current crowding region at high temperature. This is a rapid failure process because the localized fast dissolution of Ni and Cu accelerated the solid-state reaction between solder and electroless Ni(P) or Cu trace.  相似文献   

13.
Multiple reflows are often required in 3D packaging. To elucidate the effect of temperature gradient during subsequent reflow on existing intermetallic compounds (IMCs), Cu6Sn5 IMC layers were initially formed in Cu/Sn/Cu micro interconnects. Upon subsequent reflow, synchrotron radiation real-time imaging technology was used to in situ study the dissolution and precipitation behavior of the pre-formed Cu6Sn5 under different temperature gradients. The pre-formed Cu6Sn5 IMC at the cold end continued to grow linearly with increasing aspect ratio, whereas that at the hot end dissolved linearly and then maintained a critical thin layer. The thick pre-formed Cu6Sn5 IMC at the hot end significantly hindered the dissolution of the neighboring Cu substrate until a dynamic equilibrium between chemical potential gradient and temperature gradient was satisfied. The thermomigration of Cu atoms from the hot end towards the cold end was responsible for the asymmetrical evolution of the interfacial Cu6Sn5 between the cold and hot ends. A theoretical model was proposed based on Cu diffusion flux to calculate the IMC thickness at the both ends as a function of reflow time and the equilibrium IMC thickness at the hot end under temperature gradient.  相似文献   

14.
Abstract

Fibre laser–cold metal transfer hybrid welding was introduced to join AA 6061 aluminium alloy with AISI 304 stainless steel using Al–12Si filler wire. Interface properties and microstructure of welded joints were observed by optical microscope, scanning electron microscope, energy dispersive spectrometry and X-ray diffraction techniques. A serrated intermetallic compound (IMC) layer was found at the interface between fusion zone and stainless steel. The morphology of IMC layer was uniform from the top to the bottom, and its average thickness was 3 μm. The IMC layer consisted of two layers: Al8(Fe,Cr)2Si layer close to fusion zone and (Al,Si)13Fe4 layer close to stainless steel. The joint fractured at the IMC layer and presented a tensile strength of 165 MPa. The formation of the IMC layer was closely related with the thermodynamic and kinetic behaviours of the interface and fast cooling rate of hybrid welding.  相似文献   

15.
The AuSn20/Ni joints were prepared by the reflow soldering technology and then annealed at solid-state temperature to form diffusion couples. The interfacial reactions and the growth kinetics of the intermetallic compounds (IMC) at the AuSn20/Ni soldering interface were investigated by scanning electron microscopy (SEM) and electron probe microanalysis (EPMA). The results show that, the (Ni,Au)3Sn2 phases are formed at the AuSn20/Ni interface after soldering at 583 K. The thickness l of the IMC layer monotonically increases with increasing annealing time t according to the relationship l=k(t/t0)n, where the exponent n is 0.527, 0.476 and 0.471 for 393, 433 and 473 K annealing, respectively. This indicates that the volume diffusion contributes to the growth of the IMC layer at the AuSn20/Ni interface at solid-sate temperature. The pre-exponential factor K0=1.23×10?7 m2/s and the activation enthalpy QK=81.8 kJ/mol are obtained from the results of the parabolic coefficient K by a least-squares method.  相似文献   

16.
Laser-metal inert-gas (MIG) hybrid welding-brazing was applied to the butt joint of 6061-T6 aluminum alloy and 304 stainless steel. The microstructure and mechanical properties of the joint were studied. An excellent joint-section shape was achieved from good wettability on both sides of the stainless steel. Scanning electron microscopy, energy-dispersive spectroscopy and X-ray diffractometry indicated an intermetallic compound (IMC) layer at the 6061-T6/304 interface. The IMC thickness was controlled to be ~2 μm, which was attributed to the advantage of the laser-MIG hybrid method. Fe3Al dominated in the IMC layer at the interface between the stainless steel and the back reinforcement. The IMC layer in the remaining regions consisted mainly of Fe4Al13. A thinner IMC layer and better wettability on both sides of the stainless steel were obtained, because of the optimized energy distribution from a combination of a laser beam with a MIG arc. The average tensile strength of the joint with reinforcement using laser-MIG hybrid process was improved to be 174 MPa (60% of the 6061-T6 tensile strength), which was significantly higher than that of the joint by traditional MIG process.  相似文献   

17.
超高碳(1.58%C)钢中的马氏体相变产物除了板条马氏体、片状马氏体外,还发现枣核状马氏体.HRTEM观察表明,枣核状马氏体的亚结构是高密度位错,位错密度高达1013/cm2,未观察到孪晶.基于盘片状马氏体的理论分析表明,应变能与氏体片的临界厚度(2t0*)无关,而与其临界直径(2r0*)有关;临界形核功(相变能垒)△G*与马氏体晶核临界厚径比t0*/r0*的二次方成反比.t0*/r0* <1时,马氏体核呈圆片状;t0*/r0*>1时,晶核呈枣核状;当t0*/r0*>1时,晶核呈棒状.  相似文献   

18.
纵向直流磁场对铝铜熔钎焊接头组织和性能的影响   总被引:2,自引:2,他引:0       下载免费PDF全文
采用TIG焊进行铝铜异种材料熔钎焊对接试验,通过添加Zn-2%Al药芯焊丝调控焊缝成分,并施加纵向直流磁场调控界面组织,接头力学性能显著提高. 结果表明,相比于无磁场,在纵向直流磁场的作用下,Cu侧IMC层的形状、厚度和化合物种类均发生变化:平均厚度明显变薄,由32.8 μm降至14.6 μm;形状由平直变为弯曲,起到“机械咬合”作用;Cu侧IMC层Al4.2Cu3.2Zn0.7三元化合物的出现抑制了硬脆的AlCu与Al2Cu化合物的生长,接头性能升高. 添加直流磁场后,接头抗拉强度均比无磁场时高,且接头抗拉强度随着磁场强度的增加呈现先增大后减小的趋势. 当焊接电流I = 95 A,焊接电压U = 16 V,焊接速度v = 140 mm/min,磁场强度B = 10 mT时,接头抗拉强度最高,达到110.8 MPa,比无磁场升高了约24%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号