首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 453 毫秒
1.
针对密度峰值聚类算法DPC(clustering by fast search and find of density peaks)时间复杂度高、准确度低的缺陷,提出了一种基于Ball-Tree优化的快速密度峰值聚类算法BT-DPC。算法利用第[k]近邻度量样本局部密度,通过构建Ball-Tree加速密度[ρ]及距离[δ]的计算;在类簇分配阶段,结合[k]近邻思想设计统计学习分配策略,将边界点正确归类。通过在UCI数据集上的实验,将该算法与原密度峰值聚类算法及其改进算法进行了对比,实验结果表明,BT-DPC算法在降低时间复杂度的同时提高了聚类的准确度。  相似文献   

2.
密度峰值聚类(DPC)算法是一种新颖的基于密度的聚类算法,其原理简单、运行效率高.但DPC算法的局部密度只考虑了样本之间的距离,忽略了样本所处的环境,导致算法对密度分布不均数据的聚类效果不理想;同时,样本分配过程易产生分配错误连带效应.针对上述问题,提出一种基于相对密度估计和多簇合并的密度峰值聚类(DPC-RD-MCM)算法. DPC-RD-MCM算法结合K近邻和相对密度思想,定义了相对K近邻的局部密度,以降低类簇疏密程度对类簇中心的影响,避免稀疏区域没有类簇中心;重新定义微簇间相似性度量准则,通过多簇合并策略得到最终聚类结果,避免分配错误连带效应.在密度分布不均数据集、复杂形态数据集和UCI数据集上,将DPC-RD-MCM算法与DPC及其改进算法进行对比,实验结果表明:DPC-RD-MCM算法能够在密度分布不均数据上获得十分优异的聚类效果,在复杂形态数据集和UCI数据集的聚类性能上高于对比算法.  相似文献   

3.
密度峰值聚类(density peaks clustering,DPC)算法基于局部密度和相对距离识别簇中心,忽视了样本所处环境对样本点密度的影响,因此不容易发现低密度区域的簇中心;DPC算法采用的单步分配策略的容错性差,一旦一个样本点分配错误,将导致后续一系列样本点分配错误。针对上述问题,提出二阶自然最近邻和多簇合并的密度峰值聚类算法(TNMM-DPC)。首先,引入二阶自然邻居的概念,同时考虑样本点的密度与样本点所处的环境,重新定义了样本点的局部密度,以降低类簇的疏密对类簇中心选择的影响;其次,定义了核心点集来选取初始微簇,依据样本点与微簇间的关联度对样本点进行分配;最后引入了邻居边界点集的概念对相邻的子簇进行合并,得到最终的聚类结果,避免了分配错误连带效应。在人工数据集和UCI数据集上,将TNMM-DPC算法与DPC及其改进算法进行了对比,实验结果表明,TNMM-DPC算法能够解决DPC算法所存在的问题,可以有效聚类人工数据集和UCI数据集。  相似文献   

4.
以K-means为代表的聚类算法被广泛地应用在许多领域, 但是K-means不能直接处理不完整数据集. km-means是一种处理不完整数据集的聚类算法, 通过调整局部距离计算方式, 减少不完整数据对聚类过程的影响. 然而km-means初始化阶段选取的聚类中心存在较大的不可靠性, 容易陷入局部最优解. 针对此问题, 本文引入可信度, 提出了结合可信度的km-means聚类算法, 通过可信度调整距离计算, 增大初始化过程中选取聚类中心的可靠性, 提高聚类算法的准确度. 最后, 通过UCI和UCR数据集验证算法的有效性.  相似文献   

5.
针对密度峰值聚类算法(The density peak clustering algorithm,DPC)聚类结果受距离阈值dc参数影响较大的问题,提出一种局部密度捕获范围以及利用局部密度信息熵均值进行加权优化的方法(简称为LDDPC),在DPC算法选取到错误的距离阈值dc时,通过对最大密度邻近点的相对距离进行加权,重新获得正确的分类数量和聚类中心。经典数据集的实验结果表明,基于局部密度信息熵均值加权优化能避免 DPC 算法中距离阈值dc对聚类结果的影响,提高分类的正确率。  相似文献   

6.
徐晓  丁世飞  丁玲 《软件学报》2022,33(5):1800-1816
密度峰值聚类(density peaks clustering, DPC)算法是聚类分析中基于密度的一种新兴算法, 该算法考虑局部密度和相对距离绘制决策图, 快速识别簇中心, 完成聚类. DPC具有唯一的输入参数, 且无需先验知识, 也无需迭代. 自2014年提出以来, DPC引起了学者们的极大兴趣, 并得到了快速发展...  相似文献   

7.
纪霞  姚晟  赵鹏 《自动化学报》2020,46(3):562-575
针对Science发表的密度峰值聚类(Density peaks clustering,DPC)算法及其改进算法效率不高的缺陷,提出一种相对邻域和剪枝策略优化的密度峰值聚类(Relative neighborhood and pruning strategy optimized DPC,RP-DPC)算法.DPC聚类算法主要有两个阶段:聚类中心点的确定和非聚类中心点样本的类簇分配,并且时间复杂度集中在第1个阶段,因此RP-DPC算法针对该阶段做出改进研究.RP-DPC算法去掉了DPC算法预先计算距离矩阵的步骤,首先利用相对距离将样本映射到相对邻域中,再从相对邻域来计算各样本的密度,从而缩小各样本距离计算及密度统计的范围;然后在计算各样本的δ值时加入剪枝策略,将大量被剪枝样本δ值的计算范围从样本集缩小至邻域以内,极大地提高了算法的效率.理论分析和在人工数据集及UCI数据集的对比实验均表明,与DPC算法及其改进算法相比,RP-DPC算法在保证聚类质量的同时可以实现有效的时间性能提升.  相似文献   

8.
杨宁  唐常杰  王悦  陈瑜  郑皎凌 《软件学报》2010,21(4):1031-1041
为解决倾斜分布的数据流聚类这一难题,提出了时态密度概念,给出其度量,揭示了其包括可增量计算在 内的一系列数学性质;设计了时态密度树结构,提高了聚类时的存储和检索效率;设计了能够以实时或异步方式捕捉 数据倾斜分布的数据流时态特征的聚类算法TDCA(temporal density based clustering algorithm),其时间复杂度为 O(c×m×lgm).实验结果表明,该算法不仅有较强的功能,而且具有较好的规模可伸缩性.  相似文献   

9.
密度峰值聚类(DPC)算法在对密度分布差异较大的数据进行聚类时效果不佳,聚类结果受局部密度及其相对距离影响,且需要手动选取聚类中心,从而降低了算法的准确性与稳定性。为此,提出一种基于加权共享近邻与累加序列的密度峰值算法DPC-WSNN。基于加权共享近邻重新定义局部密度的计算方式,以避免截断距离选取不当对聚类效果的影响,同时有效处理不同类簇数据集分布不均的问题。在原有DPC算法决策值的基础上,生成一组累加序列,将累加序列的均值作为聚类中心和非聚类中心的临界点从而实现聚类中心的自动选取。利用人工合成数据集与UCI上的真实数据集测试与评估DPC-WSNN算法,并将其与FKNN-DPC、DPC、DBSCAN等算法进行比较,结果表明,DPC-WSNN算法具有更好的聚类表现,聚类准确率较高,鲁棒性较强。  相似文献   

10.
针对现有的基于密度的聚类算法存在参数敏感,处理非球面数据和复杂流形数据聚类效果差的问题,提出一种新的基于密度峰值的聚类算法。该算法首先根据自然最近邻居的概念确定数据点的局部密度,然后根据密度峰局部密度最高并且被稀疏区域分割来确定聚类中心,最后提出一种新的类簇间相似度概念来解决复杂流形问题。在实验中,该算法在合成和实际数据集中的表现比DPC(clustering by fast search and find of density peaks)、DBSCAN(density-based spatial clustering of applications with noise)和K-means算法要好,并且在非球面数据和复杂流形数据上的优越性特别大。  相似文献   

11.
孙林  秦小营  徐久成  薛占熬 《软件学报》2022,33(4):1390-1411
密度峰值聚类(density peak clustering, DPC)是一种简单有效的聚类分析方法.但在实际应用中,对于簇间密度差别大或者簇中存在多密度峰的数据集,DPC很难选择正确的簇中心;同时,DPC中点的分配方法存在多米诺骨牌效应.针对这些问题,提出一种基于K近邻(K-nearest neighbors,KNN)和优化分配策略的密度峰值聚类算法.首先,基于KNN、点的局部密度和边界点确定候选簇中心;定义路径距离以反映候选簇中心之间的相似度,基于路径距离提出密度因子和距离因子来量化候选簇中心作为簇中心的可能性,确定簇中心.然后,为了提升点的分配的准确性,依据共享近邻、高密度最近邻、密度差值和KNN之间距离构建相似度,并给出邻域、相似集和相似域等概念,以协助点的分配;根据相似域和边界点确定初始聚类结果,并基于簇中心获得中间聚类结果.最后,依据中间聚类结果和相似集,从簇中心到簇边界将簇划分为多层,分别设计点的分配策略;对于具体层次中的点,基于相似域和积极域提出积极值以确定点的分配顺序,将点分配给其积极域中占主导地位的簇,获得最终聚类结果.在11个合成数据集和27个真实数据集上进行仿真...  相似文献   

12.
张清华  周靖鹏  代永杨  王国胤 《软件学报》2023,34(12):5629-5648
密度峰值聚类(density peaks clustering, DPC)是一种基于密度的聚类算法,该算法可以直观地确定类簇数量,识别任意形状的类簇,并且自动检测、排除异常点.然而, DPC仍存在些许不足:一方面, DPC算法仅考虑全局分布,在类簇密度差距较大的数据集聚类效果较差;另一方面, DPC中点的分配策略容易导致“多米诺效应”.为此,基于代表点(representative points)与K近邻(K-nearest neighbors, KNN)提出了RKNN-DPC算法.首先,构造了K近邻密度,再引入代表点刻画样本的全局分布,提出了新的局部密度;然后,利用样本的K近邻信息,提出一种加权的K近邻分配策略以缓解“多米诺效应”;最后,在人工数据集和真实数据集上与5种聚类算法进行了对比实验,实验结果表明,所提出的RKNN-DPC可以更准确地识别类簇中心并且获得更好的聚类结果.  相似文献   

13.
传统根据[K]-近邻图计算测地距离的方法,虽然能够发现流形分布数据间的相似关系,但是当不同类的点存在粘连关系时,依此计算相似度时不能体现样本间的真实关系,从而无法有效聚类。针对传统测地距离计算相似度的方法不能有效处理粘连数据集的问题,提出了基于局部密度和测地距离的谱聚类方法。计算样本的局部密度,寻找每个样本点的最近高密度点,并选择边缘点和非边缘点;在边缘点和其最近高密度点之间构造边、非边缘点之间的[K]个近邻点构造边,依此计算测地距离和相似度并进行聚类。在人工数据集和UCI数据集上的实验表明,该算法在处理粘连数据集时有效提高了聚类准确率。  相似文献   

14.
密度峰值聚类(DPC)方法能够快速地对数据进行聚类,而不管它们的形状和包含它们的空间的维数,近年来得到广泛研究和应用。然而,当各个聚类中心的密度的差异较大,或者同一个类中包含多个密度中心时,DPC计算效果受到影响。针对于此,提出了基于密度二分法的密度峰值聚类方法。首先,求出全部数据平均密度,将数据分为高密度点和低密度点,然后,根据高密度的点的决策图识别出聚类中心后,根据是否存在可达距离的数据点对同类的聚类中心实现合并。最后,根据提出的分配策略,使高密度点和低密度点都分配到合适的聚类中心,从而实现聚类。在多个合成及实际数据集上的实验表明,该方法的聚类效果明显优于已有的DPC方法。  相似文献   

15.
密度分布不均数据是指类簇间样本分布疏密程度不同的数据.密度峰值聚类(DPC)算法在处理密度分布不均数据时,倾向于在密度较高区域内找到类簇中心,并易将稀疏类簇的样本分配给密集类簇.为避免上述缺陷,提出一种面向密度分布不均数据的近邻优化密度峰值聚类(DPC-NNO)算法.DPC-NNO算法结合逆近邻和k近邻定义新的局部密度,提高稀疏样本的局部密度,使算法能更准确地找到类簇中心;定义分配策略时引入共享近邻,计算样本间相似性,构造相似矩阵,使同一类簇样本联系更紧密,避免错误分配样本.将所提出的DPC-NNO算法与IDPC-FA、DPCSA、FNDPC、FKNN-DPC、DPC算法进行对比,实验结果表明,DPC-NNO算法在处理密度分布不均数据时能获得优异的聚类效果,对于复杂数据集和UCI数据集,DPC-NNO算法的综合性能优于对比算法.  相似文献   

16.
机器学习的无监督聚类算法已被广泛应用于各种目标识别任务。基于密度峰值的快速搜索聚类算法(DPC)能快速有效地确定聚类中心点和类个数,但在处理复杂分布形状的数据和高维图像数据时仍存在聚类中心点不容易确定、类数偏少等问题。为了提高其处理复杂高维数据的鲁棒性,文中提出了一种基于学习特征表示的密度峰值快速搜索聚类算法(AE-MDPC)。该算法采用无监督的自动编码器(AutoEncoder)学出数据的最优特征表示,结合能刻画数据全局一致性的流形相似性,提高了同类数据间的紧致性和不同类数据间的分离性,促使潜在类中心点的密度值成为局部最大。在4个人工数据集和4个真实图像数据集上将AE-MDPC与经典的K-means,DBSCAN,DPC算法以及结合了PCA的DPC算法进行比较。实验结果表明,在外部评价指标聚类精度、内部评价指标调整互信息和调整兰德指数上,AE-MDPC的聚类性能优于对比算法,而且提供了更好的可视化性能。总之,基于特征表示学习且结合流形距离的AE-MDPC算法能有效地处理复杂流形数据和高维图像数据。  相似文献   

17.
密度峰聚类是一种基于密度的高效聚类方法,但存在对全局参数dc敏感和需要人工干预决策图进行聚类中心选择的缺陷。针对上述问题,提出了一种基于共享近邻相似度的密度峰聚类算法。首先,该算法结合欧氏距离和共享近邻相似度进行样本局部密度的定义,避免了原始密度峰聚类算法中参数dc的设置;其次,优化聚类中心的选择过程,能够自适应地进行聚类中心的选择;最后,将样本分配至距其最近并拥有较高密度的样本所在的簇中。实验结果表明,在UCI数据集和模拟数据集上,该算法与原始的密度峰聚类算法相比,准确率、标准化互信息(NMI)和F-Measure指标分别平均提高约22.3%、35.7%和16.6%。该算法能有效地提高聚类的准确性和聚类结果的质量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号