首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
采用天然碳酸盐矿物(方解石、白云石)作为吸附剂,以去除废水中的Cd2+,试验了废水中Cd2+初始浓度、pH值、反应时间、温度及吸附剂粒径等因素对Cd2+去除效果的影响。其中Cd2+初始浓度、pH值、反应时间对Cd2+的去除率影响更为显著:Cd2+初始浓度为3.2 mg·L-1时,方解石、白云石对Cd2+去除率达到96.53%、95.42%,但随着初始浓度的增加去除率降低;当Cd2+废水pH值为7.0时,方解石、白云石对Cd2+的去除率分别为95.0%、99.44%,酸性条件下Cd2+的去除率较低;去除率随反应时间增加而增加,当反应时间为24 h时,方解石、白云石对Cd2+去除率达到98.1%、95.7%。利用去离子水与0.01 mol·L-1的HCl、NaOH、NaCl分别进行解吸试验,结果表明:不同解吸剂对方解石、白云石中Cd2+解吸率都较低,分别为0.16%、2.40%、0.18%、0.17%和0.29%、9.62%、0.17%、0.39%,Cd2+能被方解石及白云石稳固地吸附。方解石、白云石对Cd2+的等温吸附线符合Freundlich和Langmuir模式,最大吸附量分别为7.709、10.546 mg·g-1。  相似文献   

2.
选矿废水由于含有残留选矿药剂易造成环境污染.论文用Fenton试剂处理含黄药模拟废水和实际选矿废水,考查了pH值、H2O2和Fe2+浓度对黄药去除率的影响.结果表明:Fenton试剂处理120mg/L的模拟黄药废水,在H2O2质量浓度20mg/L、Fe2+质量浓度12mg/L、废水初始pH为4条件下,黄药的去除率达到96.8%;处理150 mg/L的实际废水,当pH为3,H2O2质量浓度24mg/L,Fe2+质量浓度18mg/L时,黄药的去除率达到97.6%,废水可达标排放.  相似文献   

3.
常温下以ZnSO4·7H2O,NaOH和PEG-400(聚乙二醇400)为原料,采用直接沉淀法制备纳米ZnO,并以自制纳米ZnO为光催化剂处理含镉废水.考察催化剂的投加量,光照时间,pH值,重金属离子初始质量浓度等因素对模拟废水中镉离子去除率的影响.实验结果表明:纳米ZnO粉体的光催化效果好,紫外光激发下在处理含镉废水的试验中显示出较高的去除效率.纳米ZnO光催化处理含镉废水的效果受废水pH值、废水负荷、纳米ZnO投加量以及不同光照时间等因素的影响,各因素对光催化效果影响的次序为:废水质量浓度纳米ZnO投加量光照时间溶液pH值.正交试验确定纳米ZnO光催化处理含镉废水的优化条件为:pH值为9,搅拌时间为2.5 h,模拟废水质量浓度为20 mg/L,ZnO的用量为3 g/L,在此条件下镉的去除率为88.26%.  相似文献   

4.
以废弃花生壳和小麦秸秆为原料,对模拟废水进行了Cd2+吸附试验研究.结果表明,溶液pH值、溶液温度、Cd2+初始质量浓度、花生壳粉和秸秆粉的用量、吸附时间等因素均对吸附效果有一定影响.在Cd2+初始质量浓度为25mg/L、pH值为6、吸附剂投加量0.25g、恒温振荡120min的条件下,花生壳粉和小麦秸秆粉对Cd2+的去除率分别为63.2%和52.4%.  相似文献   

5.
利用弗罗里硅土吸附脱除石化低浓度废水中的氨氮。分别采用BET、SEM及XRF对弗罗里硅土进行表征。考察剂液比、吸附时间、pH、吸附温度及氨氮初始质量浓度等因素对吸附脱除氨氮效果的影响。结果表明,在氨氮初始质量浓度为50.00 mg/L、剂液比为2 g/L、pH为7、吸附温度为293.15 K和吸附时间为5 min的条件下,氨氮去除效果最佳;在此条件下处理石化低质量浓度氨氮废水,氨氮质量浓度从17.53 mg/L降至5.16 mg/L,去除率达到70.6%,满足GB 31570-2015的排放标准。  相似文献   

6.
羽毛角蛋白残渣对水中重金属Cd~(2+)的去除特性研究   总被引:1,自引:0,他引:1  
以羽毛可溶性角蛋白提取过程产生的角蛋白残渣作为原料,制备了一种具有多孔结构的吸附材料,研究其对水中重金属Cd2+的吸附去除特性,同时考察了Cd2+初始浓度、吸附材料投加量、温度和溶液pH值对Cd2+的去除影响.实验结果显示,当Cd2+初始浓度为20mg/L,吸附材料投加量为0.10g,温度为25℃,溶液pH值为8时,所制备的吸附材料对水中Cd2+的去除率可达97.0%以上,表明以羽毛角蛋白残渣所制备的吸附材料可作为降低水中重金属污染物的有效吸附剂.  相似文献   

7.
蒙脱石/粉煤灰复合材料吸附含锌废水的研究   总被引:2,自引:1,他引:1  
以蒙脱石、粉煤灰为原料,添加一定量的粘结剂混合造粒制成复合颗粒吸附剂,用于处理含Zn2+废水,实验研究了吸附反应时间、吸附剂投加量、废水初始浓度及介质pH值对吸附性能的影响。研究结果表明:蒙脱石/粉煤灰复合颗粒吸附剂的最佳吸附工艺条件为:在室温下,吸附反应时间50 min,吸附剂投加量5.0 g/L,初始浓度40 mg/L,溶液pH值为5。在此条件下处理含Zn2+废水,吸附去除率为95.77%,处理后残余浓度为1.69 mg/L,达到国家一级排放标准(2.0 mg/L)。  相似文献   

8.
利用废弃蛋壳制备碳羟基磷灰石,并利用其吸附废水中的Cd2 .考察了Cd2 初始浓度、pH值、吸附时间、吸附剂用量以及温度等因素对吸附效果的影响,结果表明:当废水中Cd2 初始浓度为30 mg/L、pH=7、吸附时间35 m in、温度35℃时,碳羟基磷灰石对Cd2 去除率高达99.9%.吸附实验还表明该吸附符合Freundlich方程.  相似文献   

9.
构建以厌氧活性污泥为阳极区底物、不锈钢网和活性炭颗粒组合三维阳极、硫酸根为电子受体、吸附固定在活性炭纤维柱上的硫酸盐还原菌为生物阴极的微生物燃料电池系统(MFC),在HRT=24h下处理模拟酸性矿井水(实测Hg2+质量浓度为19mg/L,Cr6+为26.3mg/L,Mn2+为40.2mg/L,Ni 2+为44.8mg/L;pH=3.03;COD=114.8mg/L;SO2-4=3 096.1mg/L),系统运行25d.结果表明:SRB生物阴极MFC系统具有很好产电性能,输出电压高达445 mV(外电阻为1 000Ω),表观内阻为200Ω,功率密度最高达75.66mW·m-2;其对AMD pH值的调节效果显著,出水稳定在pH=7.2左右;废水中Hg2+、Cr6+的去除率均为100%,Mn2+去除率为65%以上,最高达94%,Ni 2+的去除率在92%以上;出水COD均在50mg/L左右;SO2-4去除速率最高达1.824kg/m3·d-1.SRB生物阴极MFC对AMD具有良好的调节和处理效果.  相似文献   

10.
选取不同有机物作为碳源,考察碳源对于高硫酸盐(SO42-)环境中硫酸盐还原菌(Sulfate-reducing bacteria,SRB)生物活性的影响;通过零价铁(Zero-valent iron,ZVI)的添加考察ZVI对于SRB生物活性的促进作用.结果表明:碳源会对SRB的生物活性产生很大影响,导致产生不同的SO42-还原效率;在SRB分别以柠檬酸钠、乳酸钠和可溶性淀粉为碳源时,通过添加ZVI可以明显提高SRB的生物活性;乳酸钠最适合作为SRB处理高SO42-浓度废水的碳源,当乳酸钠作为碳源时,SRB-ZVI体系对于SO42-初始质量浓度低于8 500 mg/L的废水具有良好的处理效果,即使废水中SO42-初始质量浓度达到11 000 mg/L时,SRB-ZVI体系对于SO42-的还原效率依然可以达到81.8%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号