首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
The suprachiasmatic nuclei (SCN) at the base of the hypothalamus are known to be the site of the endogenous circadian pacemaker in mammals. The SCN are innervated by the retinohypothalamic tract, which conveys photic information to the SCN. GABA is one of the most abundant neurotransmitters in the SCN, and has been implicated in the modulation of photic responses of the SCN circadian pacemaker. This study sought to examine the effect of GABAergic compounds on optic nerve-evoked SCN field potentials recorded in rat horizontal hypothalamic slices. The GABAA agonist muscimol (10 microM) potentiated SCN field potentials by 23%, while application of the GABAA antagonist bicuculline (10 microM) inhibited SCN field potentials by a similar amount, (22%). Conversely, the GABA, agonist baclofen (1.0 microM) inhibited SCN field potentials by 48%, while the GABAB antagonist phaclofen (0.5 mM) augmented SCN field potentials by 62%. Recordings performed at both day and night times indicate that there were no qualitative day-night differences in GABAergic activity on SCN field potentials. This study concludes that, in general, GABAA activity tends to increase, and GABAB activity tends to decrease the response of SCN neurons to optic nerve stimulation.  相似文献   

2.
The present study makes use of the photic induction of Fos in the suprachiasmatic nucleus (SCN) to explore the pharmacology of retinal input to this circadian pacemaker. Our results demonstrate that the GABAA antagonist bicuculline and the benzodiazepine agonist diazepam, both of which prevent light-induced phase shifts, do not inhibit photic induction of Fos expression in the hamster SCN. In contrast, the GABAB agonist, baclofen, prevents both light-induced phase shifts and inhibits photic induction of Fos expression in the SCN. One explanation of this difference may be that baclofen acts to prevent photic information from reaching the SCN while bicuculline and diazepam act within the SCN at a point 'downstream' from Fos induction.  相似文献   

3.
The suprachiasmatic nuclei (SCN) contain a circadian clock whose activity can be recorded in vitro for several days. This clock can be reset by the application of neuropeptide Y. In this study, we focused on determination of the receptor responsible for neuropeptide Y phase shifts of the hamster circadian clock in vitro. Coronal hypothalamic slices containing the SCN were prepared from Syrian hamsters housed under a 14 h:10 h light:dark cycle. Tissue was bathed in artificial cerebrospinal fluid (ACSF), and the firing rates of individual cells were sampled throughout a 12 h period. Control slices received either no application or application of 200 nl ACSF to the SCN at zeitgeber time 6 (ZT6; ZT12 was defined as the time of lights off). Application of 200 ng/200 nl of neuropeptide Y at ZT6 resulted in a phase advance of 3.4 h. Application of the Y2 receptor agonist, neuropeptide Y (3-36), induced a similar phase advance in the rhythm, while the Y1 receptor agonist, [Leu31, Pro34]-neuropeptide Y had no effect. Pancreatic polypeptide (rat or avian) also had no measurable phase-shifting effect. Neuropeptide Y applied at ZT20 or 22 had no detectable phase-shifting effect. These results suggest that the phase-shifting effects of neuropeptide Y are mediated through a Y2 receptor, similar to results found in vivo.  相似文献   

4.
The involvement of GABAA and GABAB receptors in neural mechanisms responsible for the production of theta rhythms in hippocampal formation (HPC) slices is addressed in the present study. In a number of papers published in the last decade, we have demonstrated that theta-like activity can be successfully recorded in the limbic cortex maintained in vitro when the cholinergic agonists, acetylcholine, carbachol or muscarine, were added to the bath. Recently, we have also shown a strong GABAA modulation of the cholinergic-induced in vitro theta-like activity. This study presents a report of the first demonstration of in vitro theta-like field responses induced a consequence of simultaneously inhibiting hippocampal GABAA and GABAB receptors. HPC slices (350 microns) were maintained in a gas-liquid interface chamber (35 degrees C). Theta-like activity was induced in the presence of bath perfusion of bicuculline (GABAA antagonist) and 2-hydroxysaclophen (GABAB antagonist). This in vitro induced field response was antagonized both by muscimol (GABAA agonist) and baclophen (GABAB agonist). In addition, the experiments presented here revealed that bicuculline/2-hydroxysaclophen-induced in vitro theta-like activity also had a strong cholinergic M1 involvement: it was abolished by hemicholinium-3 (choline transport blocker) and pirenzepine (specific antagonist of M1 receptor), but not by gallamine (specific antagonist of M2 receptor). The results of the present study provided further evidence for a strong GABAergic/cholinergic interaction in the neural mechanism responsible for production of theta-like activity in the hippocampal formation slices.  相似文献   

5.
GABA is the primary transmitter released by neurons of the suprachiasmatic nucleus (SCN), the circadian clock in the brain. Whereas GABAB receptor agonists exert a significant effect on circadian rhythms, the underlying mechanism by which GABAB receptors act in the SCN has remained a mystery. We found no GABAB receptor-mediated effect on slow potassium conductance, membrane potential, or input resistance in SCN neurons in vitro using whole-cell patch-clamp recording. In contrast, the GABAB receptor agonist baclofen (1-100 microM) exerted a large and dose-dependent inhibition (up to 100%) of evoked IPSCs. Baclofen reduced the frequency of spontaneous IPSCs but showed little effect on the frequency or amplitude of miniature IPSCs in the presence of tetrodotoxin. The activation of GABAB receptors did not modulate postsynaptic GABAA receptor responses. The depression of GABA release by GABAB autoreceptors appeared to be mediated primarily through a modulation of presynaptic calcium channels. The baclofen inhibition of both calcium currents and evoked IPSCs was greatly reduced (up to 100%) by the P/Q-type calcium channel blocker agatoxin IVB, suggesting that P/Q-type calcium channels are the major targets involved in the modulation of GABA release. To a lesser degree, N-type calcium channels were also involved. The inhibition of GABA release by baclofen was abolished by a pretreatment with pertussis toxin (PTX), whereas the inhibition of whole-cell calcium currents by baclofen was only partially depressed by PTX, suggesting that G-protein mechanisms involved in GABAB receptor modulation at the soma and axon terminal may not be identical. We conclude that GABAB receptor activation exerts a strong presynaptic inhibition of GABA release in SCN neurons, primarily by modulating P/Q-type calcium channels at axon terminals.  相似文献   

6.
In the CNS, gamma-aminobutyric acid (GABA) affects neuronal activity through both the ligand-gated GABAA receptor channel and the G protein-coupled GABAB receptor. In the mature nervous system, both receptor subtypes decrease neural excitability, whereas in most neurons during development, the GABAA receptor increases neural excitability and raises cytosolic Ca2+ levels. We used Ca2+ digital imaging to test the hypothesis that GABAA receptor-mediated Ca2+ rises were regulated by GABAB receptor activation. In young, embryonic day 18, hypothalamic neurons cultured for 5 +/- 2 days in vitro, we found that cytosolic Ca2+ rises triggered by synaptically activated GABAA receptors were dramatically depressed (>80%) in a dose-dependent manner by application of the GABAB receptor agonist baclofen (100 nM-100 microM). Coadministration of the GABAB receptor antagonist 2-hydroxy-saclofen or CGP 35348 reduced the inhibitory action of baclofen. Administration of the GABAB antagonist alone elicited a reproducible Ca2+ rise in >25% of all synaptically active neurons, suggesting that synaptic GABA release exerts a tonic inhibitory tone on GABAA receptor-mediated Ca2+ rises via GABAB receptor activation. In the presence of tetrodotoxin the GABAA receptor agonist muscimol elicited robust postsynaptic Ca2+ rises that were depressed by baclofen coadministration. Baclofen-mediated depression of muscimol-evoked Ca2+ rises were observed in both the cell bodies and neurites of hypothalamic neurons taken at embryonic day 15 and cultured for three days, suggesting that GABAB receptors are functionally active at an early stage of neuronal development. Ca2+ rises elicited by electrically induced synaptic release of GABA were largely inhibited (>86%) by baclofen. These results indicate that GABAB receptor activation depresses GABAA receptor-mediated Ca2+ rises by both reducing the synaptic release of GABA and decreasing the postsynaptic Ca2+ responsiveness. Collectively, these data suggest that GABAB receptors play an important inhibitory role regulating Ca2+ rises elicited by GABAA receptor activation. Changes in cytosolic Ca2+ during early neural development would, in turn, profoundly affect a wide array of physiological processes, such as gene expression, neurite outgrowth, transmitter release, and synaptogenesis.  相似文献   

7.
8.
The suprachiasmatic nuclei (SCN) of the anterior hypothalamus contain the master circadian pacemaker in mammals. On the occasion of the 25th anniversary of the discovery of the SCN as the circadian clock, Charles A. Czeisler and Steven M. Reppert organized a meeting to review milestones and recent developments in the study of the SCN. The discovery that the SCN contain tissue necessary for generation of circadian rhythmicity was established by lesion studies published in 1972. The second phase of study demonstrated unequivocally that the SCN contain an autonomous circadian pacemaker. The principal studies in this period showed the presence of metabolic and electrical activity rhythms in the SCN in vivo and progressed to studies showing that the SCN maintain rhythmicity in vitro, demonstrating that the transplanted SCN can restore circadian function following destruction of the host SCN and ultimately showing that single SCN "clock cells" exhibit independent rhythms in firing rate. The third phase of study, aimed at identifying the biochemical and molecular mechanisms responsible for rhythmicity within the SCN, has begun with the identification of circadian mutants (tau mutant hamsters and Clock mutant mice) and the isolation of the Clock gene. This report traces the important steps forward in our understanding of the suprachiasmatic circadian clock by recounting the information presented at the SCN Silver Anniversary Celebration.  相似文献   

9.
Cell lines derived from the rat suprachiasmatic nucleus (SCN) were screened for circadian clock properties distinctive of the SCN in situ. Immortalized SCN cells generated robust rhythms in uptake of the metabolic marker 2-deoxyglucose and in their content of neurotrophins. The phase relationship between these rhythms in vitro was identical to that exhibited by the SCN in vivo. Transplantation of SCN cell lines, but not mesencephalic or fibroblast lines, restored the circadian activity rhythm in arrhythmic, SCN-lesioned rats. Thus, distinctive oscillator, pacemaker, and clock properties of the SCN are not only retained but also maintained in an appropriate circadian phase relationship by immortalized SCN progenitors.  相似文献   

10.
A variety of observations from several rodent species suggest that a serotonin (5-HT) input to the suprachiasmatic nucleus (SCN) circadian pacemaker may play a role in resetting or entrainment of circadian rhythms by non-photic stimuli such as scheduled wheel running. If 5-HT activity within the SCN is necessary for activity-induced phase shifting, then it should be possible to block or attenuate these phase shifts by reducing 5-HT release or by blocking post-synaptic 5-HT receptors. Animals received one of four serotonergic drugs and were then locked in a novel wheel for 3 h during the mid-rest phase, when novelty-induced activity produces maximal phase advance shifts. Drugs tested at several doses were metergoline (5-HT1/2 antagonist; i.p.), (+)-WAY100135 (5-HT1A postsynaptic antagonist, which may also reduce 5-HT release by an agonist effect at 5-HT1A raphe autoreceptors; i.p.), NAN-190 (5-HT1A postsynaptic antagonist, which also reduces 5-HT release via an agonist effect at 5-HT1A raphe autoreceptors; i.p.) and ritanserin (5-HT2/7 antagonist; i.p. and i.c.v.). Mean and maximal phase shifts to running in novel wheels were not significantly affected by any drug at any dose. These results do not support a hypothesis that 5-HT release or activity at 5HT1, 2 and 7 receptors in the SCN is necessary for the production of activity-induced phase shifts in hamsters.  相似文献   

11.
The hypothalamic suprachiasmatic nucleus (SCN) of the mammal is the circadian pacemaker responsible for generation of circadian rhythms. Several immediate-early genes are expressed in the SCN by light stimuli which induce phase shifts of animal activity rhythms. In the present study, we investigated whether Homer, a PDZ-like protein which is rapidly induced following synaptic activation, mRNA expression is regulated by light in rat SCN. Homer mRNA expression in the SCN of rat killed at 4 h after onset of the light and dark phases was very low. One hour light stimuli during the subjective night dramatically induced Homer mRNA expression in the ventrolateral portion of the SCN, whereas light stimuli during the subjective light phase did not. This finding implies that Homer may be involved in the photic entrainment of the circadian clock.  相似文献   

12.
A circadian pacemaker consists of at least three essential features: the ability to generate circadian oscillations, an output signal, and the ability to be entrained by external signals. In rodents, ablation of the suprachiasmatic nucleus (SCN) results in the loss of circadian rhythms in activity. Rhythmicity can be restored by transplanting fetal SCN into the brain of the lesioned animal, demonstrating the first two of the essential pacemaker features within the grafts. External signals, such as the light/dark cycle, have not, however, been shown to entrain the restored rhythms. Melatonin injections are an effective entraining stimulus in fetal and neonatal Syrian hamsters of the same developmental ages used to provide donor tissue for transplantation. Therefore, melatonin was used to test the hypothesis that SCN grafts contain an entrainable pacemaker. Daily injections of melatonin were given to SCN-lesioned hosts beginning on the day after transplantation of fetal SCN. Two groups that received melatonin at different times of day 12 hr apart each showed significantly clustered phases but with average phases that differed by 8.67 hr. Thus melatonin was able to entrain the restored circadian activity rhythms. In contrast to these initial injections, injections given 6 weeks after transplantation were unable to entrain or phase shift the rhythms. The results demonstrate that SCN grafts contain an entrainable circadian pacemaker. In addition, the results also indicate that the fetal SCN is directly sensitive to melatonin and, as with intact hamsters, sensitivity to melatonin is lost during SCN development.  相似文献   

13.
1. Activation of gamma-aminobutyric acid-B (GABAB) receptors during N-methyl-D-aspartate (NMDA)-induced fictive locomotor activity in the lamprey spinal cord reduces the burst frequency and changes the intersegmental coordination. Presynaptic inhibition of both the excitatory and inhibitory synaptic transmission from spinal premotor interneurons occurs through GABAB receptor activation. To further analyze the cellular mechanisms underlying the GABABergic modulation of the locomotor network, the present study investigates somatodendritic effects of GABAB receptor activation on interneurons and motoneurons in the lamprey spinal cord in vitro using single-electrode current- and voltage-clamp techniques. 2. High- (HVA) and low- (LVA) voltage-activated calcium currents were studied with single-electrode voltage clamp when Na+ and K+ currents were blocked--using tetrodotoxin, tetraethylammonium (TEA), and CsCl electrodes--after substituting Ca2+ with Ba2+. Cobalt-sensitive inward barium currents, activated at -50 mV, became larger when the holding potential was set to a more hyperpolarized level, thus suggesting the existence of an LVA calcium current. The presence of cobalt-sensitive inward barium currents activated at -30 and -10 mV suggests the existence of an HVA calcium current. GABAB receptor activation (baclofen) reduced the peak amplitude of both the LVA and HVA Ca2+ component. 3. The late phase of the afterhyperpolarization (AHP), which follows the action potential, was reduced in amplitude by cobalt, thus lending further support to the notion that the Ca2+ influx, and the subsequent activation of Ca(2+)-dependent K+ channels (KCa2+), constitutes the major part of the AHP generation. Application of the GABAB agonist baclofen also reduced the peak amplitude of the AHP in interneurons and motoneurons, and this reduction was counteracted by the GABAB antagonist 2(OH)saclofen. Baclofen reduced the duration of action potentials broadened by TEA, thus suggesting that the Ca2+ inflow was reduced. Intracellular injection of the GTP analogue GTP gamma S also reduced the duration of the action potential and the peak amplitude of the AHP in TEA, thus supporting the notion that a GTP-binding protein (G-protein)-mediated GABAB receptor activation reduced the calcium inflow, leading to less activation of KCa channels and, consequently, to a smaller peak amplitude of the AHP. 4. Baclofen suppressed the subthreshold depolarization induced by a depolarizing current pulse injection without affecting either the spike threshold or the resting membrane conductance.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
There is little information on GABAB receptor-mediated effects on orofacial motoneurons. We recorded the inspiratory activity from both hypoglossal (XII) nerves in urethane-anesthetized, paralyzed, vagotomized and artificially ventilated rats. A GABAB receptor agonist, baclofen, or antagonist, CGP-35348, was microinjected into one XII nucleus. Baclofen rapidly reduced the XII nerve activity in a dose-dependent manner by over 50%. The antagonist caused a delayed suppression of activity by 40%. We conclude that: (1) GABAB receptors within the XII nucleus may suppress the activity of inspiratory XII motoneurons, but they are not tonically active under the conditions of our experiment; (2) there is a net endogenous excitatory effect in XII motoneurons that is mediated by GABAB receptors located in the reticular formation surrounding the XII nucleus.  相似文献   

15.
Optic nerve (ON) stimulation caused a postsynaptic field potential in the suprachiasmatic nucleus (SCN) of rat hypothalamic slices. The postsynaptic field potential was suppressed by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), a non-NMDA receptor antagonist, in a concentration-dependent manner, but not affected by D-amino-5-phosphonovaleric acid (APV), a competitive NMDA receptor antagonist. Tetanic stimulation to the ON induced long-term potentiation (LTP) in the SCN. Application of APV at 50 microM inhibited the induction of LTP by tetanic stimulation but CNQX at lower dose (5 microM) didn't inhibit it. These results suggest that NMDA receptors are indispensable for the induction of LTP after tetanic stimulation.  相似文献   

16.
Suprachiasmatic nuclei (SCN) from hypothalami of postnatal rats were maintained for 18-39 days in vitro as organotypic slice explants. Neuronal subtypes containing vasopressin (VP), vasoactive intestinal polypeptide (VIP), gastrin releasing hormone (GRP), and GABA were immunocytochemically identifiable in these cultures. In situ hybridization histochemistry was compatible with these SCN slice explant cultures, and mRNA encoding for VP was detected bilaterally within these nuclei. After 18 days in vitro, both VP mRNA and VP immunoreactivity increased from levels present on postnatal days 4 (the earliest age from which the explanted tissue was derived) to levels typical of adult SCNs. In contrast, the GRP expression remained low, characteristic of early postnatal animals and far lower than adult levels. This suggests that the developmental cues or programs necessary for enhanced VP expression are maintained in these cultures, while those affecting GRP expression are absent or inhibited. VIP-containing neurons were numerous in the cultures. Culture slices appeared healthy, and similar numbers and distributions of identifiable neurons within the SCN were observed, whether or not the slices were grown in the presence of serum. EM analysis revealed that the SCN in vitro is composed of tightly packed neurons, processes, and abundant synapses containing both clear and dense core vesicles, closely resembling the SCN in vivo. Vasopressinergic neuronal somata contained extensive Golgi systems and labeled secretory granules, the latter organelle being present also within processes and synaptic terminals. GABA-immunopositive processes and synaptic profiles were abundant, with labeling occurring particularly over secretory vesicles and mitochondria. This slice culture system effectively maintained much of the intrinsic organization and cellular components of the SCN for long periods in vitro and should be an excellent model system for studying the intrinsic molecular mechanisms and extrinsic cues which regulate neuronal phenotype in this circadian pacemaker.  相似文献   

17.
18.
The suprachiasmatic nuclei (SCN) of the hypothalamus contain a pacemaker that generates circadian rhythms in many functions. Light is the most important stimulus that synchronizes the circadian pacemaker to the environmental cycle. In this paper we have characterized the baseline neuronal firing patterns of the SCN as well as their response to light in freely moving rats. Multiunit and single-unit recordings showed that SCN neurons increase discharge during daytime and decrease discharge at night. Discharge levels of individual neurons that were followed throughout the circadian cycle appeared in phase with the population and were characterized by low discharge rates (often below 1 Hz), with a twofold increase during the day. The effect of light on the multiunit response was dependent on the duration of light exposure and on light intensity, with light thresholds of approximately 0.1 lux. The light response level showed a strong dependency on time of day, with large responsiveness at night and low responsiveness during day. At both phases of the circadian cycle, the response level could be raised by an increase in light intensity. Single-unit measurements revealed that the time-dependent light response of SCN neurons was present also at the level of single units. The results show that the basic light response characteristics that were observed at the multiunit level result from an integrated response of similarly behaving single units. Research at the single-unit level is therefore a useful approach for investigating the basic principles of photic entrainment.  相似文献   

19.
1. The modulatory effects of L-glutamate and its structural analogues, and of gamma-aminobutyric acid (GABA), on sympathetic co-transmission were studied in the rat isolated vas deferens exposed to electrical field stimulation (EFS). 2. Application of exogenous L-glutamate caused a concentration-dependent (1 microM-3 mM) inhibition of the rapid twitch component of the biphasic EFS contraction. However, L-glutamate (1 microM-3 mM) had a minimal effect on the phasic contraction induced by exogenous adenosine 5'-triphosphate (ATP, 150 microM) and noradrenaline (50 microM). Unlike L-glutamate, D-glutamate had no effect on the EFS contraction. 3. The L-glutamate-induced inhibition of the EFS contractions was significantly attenuated by the glutamate decarboxylase (GAD) inhibitor 3-mercapto-propionic acid (150 microM) and was abolished in the presence of the GABA transaminase (GABA-T) inhibitor, 2-aminoethyl hydrogen sulphate (500 microM). 4. The L-glutamate-induced inhibition of the electrically evoked contraction was not affected by the adenosine A1-receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX)(30 nM), reactive blue 2 (30 microM) or the GABAA receptor antagonist bicuculline (50 microM). However, the GABAB receptor antagonist 2-hydroxysaclofen (50 microM) significantly inhibited the L-glutamate effect. 5. Similar to L-glutamate, GABA also caused a concentration-dependent (0.1-100 microM) inhibition of the EFS contractions. This GABA-induced inhibition was not affected by either the GABAA receptor antagonist bicuculline (50 microM) or reactive blue 2 (30 microM). However, a significant attenuation of the GABA-mediated effect was recorded with the GABAB receptor antagonist 2-hydroxysaclofen (50 microM). Contractions of the vas deferens induced by exogenous ATP and noradrenaline were not affected by GABA (0.1-100 microM). 6. The L-glutamate analogues, N-methyl-D-aspartate (NMDA) (1 microM-1 mM) and quisqualate (Quis 0.1 microM-0.3 mM) had no effect, whilst kainate (Kain, 1 microM-1 mM) caused an inhibition of the EFS-induced contractions. Effects of Kain could be abolished by the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dioxine (CNQX, 10 microM). NMDA, Quis and Kain had no effect on the exogenous ATP- or noradrenaline-induced contractions. 7. It is concluded that the excitatory amino acid L-glutamate modulates the electrically evoked vas deferens contraction through conversion to the inhibitory amino acid GABA by a specific GABA transaminase. The GABA formed may then act on GABAB receptors and cause inhibition of the contraction through a presynaptic mechanism.  相似文献   

20.
Despite a large number of studies, the role of melatonin on glucose metabolism is still controversial. The aim of the present work was to further characterize the effect of melatonin on insulin action during: i) intravenous insulin tolerance test performed at different times of the day using melatonin, a melatonin agonist (S-20304), a melatonin antagonist (S-20928) or in pinealectomized rats. ii) euglycemic-hyperinsulinemic clamp performed in melatonin agonist-treated as well as in pinealectomized rats. The fall in glycemia after the insulin injection was not significantly affected by melatonin and melatonin agonist (S-20304) at ZT6, nor by the melatonin antagonist (S-20928) at ZT13 nor in pinealectomized animals at ZT6 in comparison to their respective control. Acute treatment with S-20304 or chronic suppression of melatonin by pinealectomy did not significantly alter basal plasma glucose and insulin levels or hepatic glucose production and whole body or individual tissue glucose utilization. These data do not give support to a crucial role of melatonin on insulin action in normal rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号