首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
萧莉美  刘玉先 《物理测试》1999,(1):18-20,29
用透射电镜研究了稀土催渗渗离子渗氮层中的晶体缺陷。结果表明,稀土催渗使γ′-Fe4N晶粒显著细化,晶界面缺陷的增加有利于氮原子的扩散。在γ′-Fe4N晶粒内有许多尺寸较小的空位型Frank位错环及其蜷线位错和堆垛层错等晶体缺陷;扩散层铁素体中存在的高密度位错及位错环。大量空位的存在,以及位错吸引空位运动,是加速渗氮的主要原因。  相似文献   

2.
稀土催渗离子渗氮机理的研究   总被引:10,自引:1,他引:10  
用透射电镜研究了稀土催渗离子渗氮层的微观结构。结果表明,稀土催渗可使γ相晶粒细化,晶界面缺陷增加;稀土的加入,增加了离子轰击效应,可使γ相内空位、位错环和堆垛层错等晶体缺陷的数量增加,可在表面0.08mm厚度的扩散层铁素体内产生高密度位错。大量晶体缺陷的产生是稀土加速离子渗氮过程中氮扩散的主要原因。  相似文献   

3.
用透射电镜衍衬方法测定了稀土催渗离子渗氮层中γ'-Fe_4N相内位错环及层错的类型。结果表明,位错环为b=1/3[111]空位型,其形成原因是:在离子渗氮过程中,高能离子的持续轰击导致大量空位点缺陷的产生,随后空位聚集成空位片,最终崩塌形成位错环;而层错类型为抽出型,其两边的不全位错是1/6(112)型Shockley不全位错,它们是由全位错1/2[110]=1/6[121] 1/6[211]反应分解形成的。  相似文献   

4.
用透射电镜衍衬方法测定了稀土催渗离子渗氮层γ′ Fe4 N相内位错环及层错的类型。结果表明 ,位错环为b =13[111]空位型 ,其形成原因是 :在离子渗氮过程中 ,高能离子的持续轰击导致大量空位点缺陷的产生 ,部分空位聚集成片崩塌而形成位错环。层错类型为抽出型 ,两侧的不全位错是 16 〈112〉型Shockley不全位错  相似文献   

5.
用透射电镜衍衬方法测定了稀土催渗离子渗氮层γ’-Fe4N相内位错环及层错的类型。结果表明,位错环为b=1/3「111」空位型,其形成原因是:在离子渗氮过程中,设有离子的持续轰击导致大量空位点缺陷的产生,部分空位聚集成片崩塌而形成位错环。层错类型为抽出型,两侧的不全位错是1/6〈112〉型Shockley不完全位错。  相似文献   

6.
用透射电镜衍衬方法测定了稀土催渗离子渗氮层中γ’Fe4N相内位错环及层错的类型。  相似文献   

7.
以新型高性能渗氮轴承钢0.30C-Cr-W为对象,研究了经真空离子渗后的氮层微观组织及高周旋转弯曲疲劳性能。结果表明:实验钢渗氮后渗层中化合物层为γ'-Fe_4N和VN相,VN的平均等效直径为80 nm,弥散分布在γ'-Fe_4N中;扩散层晶界析出大量VN,晶内有大量细小弥散的M_3C;渗氮后在107循环周次下的中值疲劳强度为850MPa。起裂方式为夹杂起裂和表面缺陷起裂,在这两种起裂方式下,渗层可有效的提高疲劳寿命。  相似文献   

8.
离子渗氮层的晶体缺陷和界面结构   总被引:4,自引:0,他引:4  
采用高分辨电子显微镜研究了离子渗氮层的晶体缺陷和界面结构结果表明,高速离子的持续轰击将导致大量空位点缺陷的产生,空位的聚合形成空位盘,空位盘的崩塌形成扩展位错,层错四面体等晶体缺陷ε(Fe_(2-3)N)和γ'(Fe_4N)相界面平直、共格,且具有:(111)∥(0001)_ε,[110]γ'∥[1120]_ε的取向关系  相似文献   

9.
离子渗氮层的组织形貌和γ′-ε界面结构SCIEI   总被引:1,自引:0,他引:1  
李凤照  戴吉岩 《金属学报》1994,30(9):B407-B412
使用电子显微镜研究了550℃,6h离子渗氮的35CrMo钢渗层的组织形貌和界面结构.结果表明,渗层外层为分层相间分布的ε+γ′条带状组织。在化合物内层的γ′相中有空位盘、位错、层错四面体和孪晶.ε相和γ′相之间的界面光滑且平直.除了观察到一个原子层结构台阶,也发现多个原子层高度的结构台阶.大量晶体缺陷的存在是加速离子渗氮过程的主要原因。  相似文献   

10.
使用电子显微镜研究了550℃,6h离子渗氮的35CrMo钢渗层的组织形貌和界面结构.结果表明,渗层外层为分层相间分布的ε+γ′条带状组织。在化合物内层的γ′相中有空位盘、位错、层错四面体和孪晶.ε相和γ′相之间的界面光滑且平直.除了观察到一个原子层结构台阶,也发现多个原子层高度的结构台阶.大量晶体缺陷的存在是加速离子渗氮过程的主要原因。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

18.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

19.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

20.
韩磊 《腐蚀与防护》2015,36(1):84-90,94
综述了常见的电化学噪声数据处理方法,介绍了直流趋势剔除、统计分析、快速傅立叶变换(FFT)法计算功率谱密度(PSD)以及小波变换处理电化学噪声信号的基本过程,并阐释了各种数学处理及所得参数的物理意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号