首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
以聚四氟乙烯(PTFE)乳液为原料、氧化钇稳定二氧化锆(YSZ)微纳米粉体为增强体,采用机械拉伸法制备了PTFE/YSZ复合微孔膜,通过扫描电子显微镜对其进行了表征,并运用单因素法探讨了分散剂聚乙烯醇(PVA)、拉伸倍数、YSZ含量和热处理温度对复合微孔膜孔隙率的影响。结果表明,在复合微孔膜中添加PVA以及增加YSZ含量均使复合微孔膜的孔隙率增大;在拉伸3.5倍、YSZ含量为8 %(质量份数)、热处理温度为320 ℃时,复合微孔膜孔隙率高达73.09 %。  相似文献   

2.
《塑料》2018,(5)
基于热致相分离(TIPS)原理,研究了锂离子电池隔膜用超高分子量聚乙烯(UHMWPE)微孔膜的制备工艺及其对微孔膜结构的影响,探索了不同平均分子量对加工成型性的影响,当铸片辊温度分别为20、30、50℃时,铸片辊温度对UHMWPE厚片后续拉伸工艺性的影响,在纵向拉伸倍率为6,横向拉伸倍率分别为4、5、6的条件下,拉伸倍率对微孔膜微观形态的影响,以及热定型时间对UHMWPE微孔膜结构的影响,同时,对UHMWPE微孔膜热致相分离(TIPS)成型机理进行了分析,优化了微孔膜的制备工艺,获得了UHMWPE微孔膜制备过程中微孔膜的结晶形态及结构的变化规律,为制备满足锂离子电池使用要求的UHMWPE微孔膜奠定了基础。  相似文献   

3.
以聚四氟乙烯(PTFE)乳液为原料,选定化学稳定性、热稳定性优异的纳米二氧化锆(ZrO2)为增强剂,制备出PTFE/ZrO2复合微孔膜,并通过X射线衍射仪对PTFE/ZrO2复合微孔膜样品的结晶性能进行了表征,使用单因素法讨论了ZrO2的含量、拉伸倍数、热处理温度及热处理时间等因素对PTFE/ZrO2复合微孔膜结晶性能的影响。结果表明,复合微孔膜的结晶度与拉伸倍数、热处理温度和热处理时间成正比,与ZrO2含量成反比;ZrO2含量为7 %、拉伸倍数为1~2.5倍、热处理温度为310 ℃、热处理时间为10 min时,制成的复合微孔膜综合性能最佳。  相似文献   

4.
尝试以聚四氟乙烯(PTFE)乳液为原料制备PTFE微孔膜,选定化学稳定性、热稳定性优异的纳米二氧化锆(ZrO2)作为增强剂以提高微孔膜强度,采用电子万能力学试验机测试了样品的力学强度,用单因素法讨论了纳米ZrO2含量、拉伸比例、热处理温度和热处理时间对微孔膜拉伸强度的影响;同时采用低温等离子体处理PTFE/ZrO2复合微孔膜以改善其表面亲水性。结果表明,PTFE/ZrO2复合微孔膜的拉伸强度与纳米ZrO2含量成正比,与拉伸倍数成反比;其拉伸强度随着热处理温度的升高或热处理时间的延长,呈先增大后减小的变化趋势,分别在310 ℃和10 min时出现最大值;低温等离子体处理的最佳时间为30 s。  相似文献   

5.
介绍了聚四氟乙烯拉伸微孔膜的制备方法、成孔机理及结构特征;对国内外聚四氟乙烯拉伸微孔膜加工工艺研究进展进行了归纳总结,并指出了不同工艺参数下制备的膜材料的特征及性能;展望了聚四氟乙烯拉伸微孔膜的发展前景。  相似文献   

6.
聚四氟乙烯(PTFE)微孔膜具有独特的纤维—"结点"微观结构,不仅具有良好的化学稳定性、热稳定性、抗腐蚀等性能,还具有高透光率、防水、透气等特性。PTFE微孔膜主要采用机械拉伸法制备。本文综述了近年来PTFE微孔膜的制备工艺、形成机理,详细阐述了填充、接枝等改性方法的研究进展以及其在化工、建筑、医学等领域应用的最新研究成果,并指出目前存在的问题,对今后的研究提出了展望。  相似文献   

7.
张艳  丁永红  俞强  刘文虎 《塑料工业》2012,40(11):107-110,117
在聚对苯二甲酸乙二醇酯(PET)树脂中加入无机微粉填充剂硫酸钡(BaSO4),利用流延拉伸法制备了PET反射膜;通过紫外可见光分光光度计、镜像光泽度计、示差扫描量热仪(DSC)等测试仪器研究了拉伸温度、拉伸倍率及拉伸速率对无机微粉PET反射膜的反射性能、光泽度及结晶性能的影响。研究结果表明,拉伸温度为90℃、拉伸倍率为4倍、拉伸速率为400 mm/min时,能获得高反射率、较好光泽度的反射膜;拉伸使得膜的玻璃转变温度升高,冷结晶峰减小且向低温方向移动,结晶度增加。  相似文献   

8.
采用冷压和自由烧结工艺制备硫酸钡(BaSO4)填充聚四氟乙烯(PTFE)密封材料,并对其进行了拉伸处理。研究了不同拉伸倍率对PTFE/BaSO4复合材料的密度、压缩回复率的影响,并通过高温差示热分析仪和X射线衍射仪分析了拉伸处理对PTFE/BaSO4复合材料熔融结晶行为以及PTFE晶态结构的影响。结果表明,随着拉伸倍率的增加,PTFE/BaSO4复合材料的压缩率大幅提高,回复率降低,总体弹性回复率提高。拉伸处理对PTFE/BaSO4复合材料熔融结晶行为的影响不大,并且PTFE的晶型不变,随着拉伸倍率的增加,结晶度呈现先减小后增大的趋势。  相似文献   

9.
禹世康  薛平  陈轲  贾明印  程鹏  赵起勤 《塑料》2022,(1):145-149
利用滑石粉(Talc)填充改性聚丙烯(PP)基体,采用固态口模拉伸法成功制备了聚丙烯/滑石粉微孔复合材料,研究了拉伸速率和拉伸温度等工艺参数对微孔复合材料的密度、耐热性、力学性能和微观结构的影响.研究结果表明,固态口模拉伸后,大量滑石粉粒子周围存在沿拉伸方向的微孔,聚丙烯基体发生取向,形成纤维状结构.提高拉伸速率,能够...  相似文献   

10.
用热致相分离法制备超高相对分子质R聚乙烯(UHMWPE)微孔膜,并通过调节成型条件(UHMWPE的含量及其相对分子质量、冷却速率)实现了UHMWPE微孔膜微观结构的可控化,研究了成型条件对微孔膜的结晶性能和力学性能的影响.结果表明,在UHMWPE含量和相对分子质量增大,冷却速率加快时,微孔膜的结晶度降低,平均孔径和孔隙...  相似文献   

11.
Vismiones and ferruginins, representatives of a new class of lypophilic anthranoids from the genusVismia were found to inhibit feeding in larvae of species ofSpodoptera, Heliothis, and inLocusta migratoria.  相似文献   

12.
13.
14.
15.
Halyomorpha halys (Stål) (Pentatomidae), called the brown marmorated stink bug (BMSB), is a newly invasive species in the eastern USA that is rapidly spreading from the original point of establishment in Allentown, PA. In its native range, the BMSB is reportedly attracted to methyl (E,E,Z)-2,4,6-decatrienoate, the male-produced pheromone of another pentatomid common in eastern Asia, Plautia stali Scott. In North America, Thyanta spp. are the only pentatomids known to produce methyl 2,4,6-decatrienoate [the (E,Z,Z)-isomer] as part of their pheromones. Methyl 2,4,6-decatrienoates were field-tested in Maryland to monitor the spread of the BMSB and to explore the possibility that Thyanta spp. are an alternate host for parasitic tachinid flies that use stink bug pheromones as host-finding kairomones. Here we report the first captures of adult and nymph BMSBs in traps baited with methyl (E,E,Z)-2,4,6-decatrienoate in central Maryland and present data verifying that the tachinid, Euclytia flava (Townsend), exploits methyl (E,Z,Z)-2,4,6-decatrienoate as a kairomone. We also report the unexpected finding that various isomers of methyl 2,4,6-decatrienoate attract Acrosternum hilare (Say), although this bug apparently does not produce methyl decatrienoates. Other stink bugs and tachinids native to North America were also attracted to methyl 2,4,6-decatrienoates. These data indicate there are Heteroptera in North America in addition to Thyanta spp. that probably use methyl 2,4,6-decatrienoates as pheromones. The evidence that some pentatomids exploit the pheromones of other true bugs as kairomones to find food or to congregate as a passive defense against tachinid parasitism is discussed.  相似文献   

16.
收集了2005年7月~2006年6月国外塑料工业的相关资料,介绍了2005—2006年国外塑料工业的发展情况。提供了世界塑料产量、消费量及全球各类树脂生产量以及各国塑料制品的进出口情况。作为对比,介绍了中国塑料的生产情况。按通用热塑性树脂(聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯、ABS树脂)、工程塑料(聚酰胺、聚碳酸酯、聚甲醛、热塑性聚酯、聚苯醚)、通用热固性树脂(酚醛、聚氨酯、不饱和树脂、环氧树脂)、特种工程塑料(聚苯硫醚、液晶聚合物、聚醚醚酮)的品种顺序,对树脂的产量、消费量、供需状况及合成工艺、产品开发、树脂品种的延伸及应用的扩展作了详细的介绍。  相似文献   

17.
收集了2007年7月~2008年6月世界塑料工业的相关资料,介绍了2007~2008年国外塑料工业的发展情况,提供了世界塑料产量、消费量及全球各类树脂的需求量及产能情况.按通用热塑性树脂(聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯、ABS树脂)、工程塑料(尼龙、聚碳酸酯、聚甲醛、热塑性聚酯、聚苯醚)、特种工程塑料(聚苯·硫醚、液晶聚合物、聚醚醚酮)、通用热固性树脂(酚醛、聚氨酯、不饱和聚酯树脂、环氧树脂)不同品种的顺序,对树脂的产量、消费量、供需状况及合成工艺、产品应用开发、树脂品种的延伸及应用的进一步扩展等技术作了详细介绍.  相似文献   

18.
Inorganic/organic hybrid materials have considerable promise and are beginning to become a major area of research for many coating usages, including abrasion and corrosion resistance. Our primary approach is to prepare the inorganic phase in situ within the film formation process of the organic phase. The inorganic phase is introduced via sol-gel chemistry into a thermosetting organic phase. By this method, the size, periodicity, spatial positioning, and density of the inorganic phase can be controlled. An important aspect of the inorganic/organic hybrid materials is the coupling agent. The initial task of the coupling agent is to provide uniform mixing of the oligomeric organic phase with the sol-gel precursors, which are otherwise immiscible. UV-curable inorganic/organic hybrid systems have the advantages of a rapid cure and the ability to be used on heat sensitive substrates such as molded plastics. Also, it is possible to have better control of the growth of the inorganic phase using UV curing. It is our ultimate goal to completely separate the curing of inorganic and organic phases to gain complete control over the morphology, and hence optimization of “all” the coating properties. Thus far, it has been found that concomitant UV curing of the inorganic and organic phases using titanium sol-gel precursors afforded nanocomposite coatings which completely block the substrate from UV light while maintaining a transparent to visible light. Also, it has been found that the morphology of the inorganic phase is highly dependent on the concentration and reactivity of the coupling agent. Presented at the 82nd Annual Meeting of the Federation of Societies for Coatings Technology, October 27–29, 2004, in Chicago, IL.  相似文献   

19.
20.
Ethanol and α-pinene were tested as attractants for large wood-boring pine beetles in Alabama, Florida, Georgia, North Carolina, and South Carolina in 2002–2004. Multiple-funnel traps baited with (−)-α-pinene (released at about 2 g/d at 25–28°C) were attractive to the following Cerambycidae: Acanthocinus nodosus, A. obsoletus, Arhopalus rusticus nubilus, Asemum striatum, Monochamus titillator, Prionus pocularis, Xylotrechus integer, and X. sagittatus sagittatus. Buprestis lineata (Buprestidae), Alaus myops (Elateridae), and Hylobius pales and Pachylobius picivorus (Curculionidae) were also attracted to traps baited with (−)-α-pinene. In many locations, ethanol synergized attraction of the cerambycids Acanthocinus nodosus, A. obsoletus, Arhopalus r. nubilus, Monochamus titillator, and Xylotrechus s. sagittatus (but not Asemum striatum, Prionus pocularis, or Xylotrechus integer) to traps baited with (−)-α-pinene. Similarly, attraction of Alaus myops, Hylobius pales, and Pachylobius picivorus (but not Buprestis lineata) to traps baited with (−)-α-pinene was synergized by ethanol. These results provide support for the use of traps baited with ethanol and (−)-α-pinene to detect and monitor common large wood-boring beetles from the southeastern region of the USA at ports-of-entry in other countries, as well as forested areas in the USA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号