首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Starting from 3-(3-chloro-1H-pyrazol-5-yl)-1H-quinoxalin-2-one (2) a series of substituted [1,2,4]triazolo[4,3-a]quinoxalines (3a-f) was prepared via a multistep reaction sequence. Affinities of the novel derivatives 3a-f for benzodiazepine as well as for adenosine A1- and A2A-receptors of rat brain were determined by radioligand binding assays. 1-Methyl-4-(3-chloro-1H-pyrazol-5-yl) derivative 3a exhibited submicromolar affinity for the benzodiazepine binding site of GABAA receptors (Ki = 340 nM) and was less potent at A1-(Ki = 7.85 microM) and A2A-(Ki = 1.43 microM) adenosine receptors (AR). Derivatives with larger substituents in the 1-position showed reduced binding to benzodiazepine and A2A-AR, but increased A1-AR affinity, the 2-thienylmethyl derivative 3f being the most potent and selective A1-AR ligand of the present series (Ki = 200 nM).  相似文献   

2.
A library of compounds were prepared by reacting 2-(bromomethyl)-1, 2-benzisothiazol-3(2H)-one 1,1-dioxide (5) with commercially available carboxylic acids in the presence of potassium carbonate or a tertiary amine base. From this library, (1,1-dioxido-3-oxo-1, 2-benzisothiazol-2(3H)-yl)methyl N-[(phenylmethoxy)carbonyl]-beta-alanate (7b) emerged as a potent inhibitor of human mast cell tryptase (IC50 = 0.85 microM). Extension of the side chain of 7b by two carbons gave (1, 1-dioxido-3-oxo-1,2-benzisothiazol-2(3H)-yl)methyl 5-[[(phenylmethoxy)carbonyl]amino]pentanoate (7d) which was an 8-fold more potent inhibitor (IC50 = 0.1 microM). Further modification of this series produced benzoic acid derivative (1, 1-dioxido-3-oxo-1,2-benzisothiazol-2(3H)-yl)methyl 4-[[(phenylmethoxy)carbonyl]amino]benzoate (7n) which is the most potent inhibitor identified in this series (IC50 = 0.064 microM). These compounds exhibit time-dependent inhibition consistent with mechanism-based inhibition. For 7b, the initial enzyme velocity is not a saturable function of the inhibitor concentration and the initial Ki could not be determined (Ki > 10 microM). The steady-state rate constant, Ki, was determined to be 396 nM. On the other hand, compounds 7d and 7n are time-dependent inhibitors with a saturable initial complex. From these studies, an initial rate constant, Ki, for 7d and 7n was found to be 345 and 465 nM, respectively. The steady-state inhibition constants, Ki, for 7d and 7n were calculated to be 60 and 52 nM, respectively. Compound 7n is a 13-fold more potent inhibitor than 7b, and these kinetic studies indicate that the increase in inhibitory activity is due to an increase in initial affinity toward the enzyme and not an increase in chemical reactivity. These inhibitors generally show high selectivity for tryptase, being 40-fold weaker inhibitors of elastase, being 100-fold weaker against trypsin, and showing no inhibition against thrombin. These compounds are not inhibitors of thrombin, plasmin t-PA, urokinase, and factor Xa (IC50 > 33 microM). In the delayed-type hypersensitivity (DTH) mouse model, a model of skin inflammation, a 5% solution of 7d reduced edema by 69% compared to control animals.  相似文献   

3.
A series of 8-substituted derivatives of 3,7-dimethyl-1-propargylxanthine (DMPX) was synthesized and investigated as A2A adenosine receptor antagonists. Different synthetic strategies for the preparation of DMPX derivatives and analogues were explored. A recently developed synthetic procedure starting from 3-propargyl-5,6-diaminouracil proved to be the method of choice for the preparation of this type of xanthine derivatives. The novel compounds were investigated in radioligand binding studies at the high-affinity adenosine receptor subtypes A1 and A2A and compared with standard A2A adenosine receptor antagonists. Structure-activity relationships were analyzed in detail. 8-Styryl-substituted DMPX derivatives were identified that exhibit high affinity and selectivity for A2A adenosine receptors, including 8-(m-chlorostyryl)-DMPX (CS-DMPX, Ki A2A = 13 nM, 100-fold selective), 8-(m-bromostyryl)-DMPX (BS-DMPX, Ki A2A = 8 nM, 146-fold selective), and 8-(3,4-dimethoxystyryl)-DMPX (Ki A2A = 15 nM, 167-fold selective). These and other novel compounds are superior to the standard A2A adenosine receptor antagonists KF17837 (4) and CSC (5) with respect to A2A affinity and/or selectivity.  相似文献   

4.
An amino group was introduced to the 3 or 6 position of a pyrazinone ring by cyclization of dipeptidyl chloromethyl ketones. Boc-Tyr-OH was coupled with the amino function, followed by removal of the Boc group to give pyrazinone ring-containing tyrosine derivatives. Of the various tyrosine derivatives prepared, 5-methyl-6-beta-phenethyl-3-tyrosylaminobutyl-2(1H)-pyrazinone exhibited strong binding to the mu-opioid receptor with a Ki value of 55.8 nM and to the delta-opioid receptor with a Ki value of 2165 nM and with a Ki mu/Ki delta value of 0.026.  相似文献   

5.
The 5-hydroxytryptamine (5-HT)1B/1D receptor subtypes are involved in the regulation of 5-HT release and have gained particular interest because of their apparent role in migraine. Although selective antagonists for both receptor subtypes recently have been developed, the receptor domains involved in the pharmacological specificity of these antagonists are defined poorly. This was investigated with a chimeric 5-HT1B/1D receptor analysis and using ketanserin as a selective antagonist of h5-HT1D (h5-HT1D) Ki = 24-27 nM) as opposed to h5-HT1B (Ki = 2193-2902 nM) receptors. A domain of the h5-HT1D receptor encompassing the second extracellular loop and the fifth transmembrane domain is necessary and sufficient to promote higher affinity binding (Ki = 65-115 nM) for ketanserin to the h5-HT1B receptor. The same domain of the h5-HT1B receptor, when exchanged in the h5-HT1D receptor, abolished high affinity binding of ketanserin (Ki = 364-1265 nM). A similar observation was made with the antagonist ritanserin and seems specific because besides the unmodified binding affinities for 5-HT and zolmitriptan, only minor modifications (2-4-fold) were observed for the agonists L 694247 and sumatriptan and the antagonists GR 127935 and SB 224289. Generating point mutations of divergent amino acids compared with the h5-HT1B receptor did not demonstrate a smaller peptide region related to a significant modification of ketanserin binding. The antagonists ketanserin and ritanserin are likely to bind the h5-HT1D receptor by its second extracellular loop, near the exofacial surface of the fifth transmembrane domain, or both.  相似文献   

6.
Alniditan is a new migraine-abortive agent. It is a benzopyran derivative and therefore structurally unrelated to sumatriptan and other indole-derivatives and to ergoline derivatives. The action of sumatriptan is thought to be mediated by 5-hydroxytryptamine (5-HT)1D-type receptors. We investigated the receptor-binding profile in vitro of alniditan compared with sumatriptan and dihydroergotamine for 28 neurotransmitter receptor subtypes, several receptors for peptides and lipid-derived factors, ion channel-binding sites, and monoamine transporters. Alniditan revealed nanomolar affinity for calf substantia nigra 5-HT1D and for cloned h5-HT1D alpha, h5-HT1D beta and h5-HT1A receptors (Ki = 0.8, 0.4, 1.1, and 3.8 nM, respectively). Alniditan was more potent than sumatriptan at 5-HT1D-type and 5-HT1A receptors. Alniditan showed moderate-to-low or no affinity for other investigated receptors; sumatriptan showed additional binding to 5-HT1F receptors. Dihydroergotamine had a much broader profile with high affinity for several 5-HT, adrenergic and dopaminergic receptors. In signal transduction assays using cells expressing recombinant h5-HT1D alpha, h5-HT1D beta, or h5-HT1A receptors, alniditan (like 5-HT) was a full agonist for inhibition of stimulated adenylyl cyclase (IC50 = 1.1, 1.3, and 74 nM, respectively, for alniditan). Therefore, in functional assays, the potency of alniditan was much higher at 5-HT1D receptors than at 5-HT1A receptors. We further compared the properties of [3H]alniditan, as a new radioligand for 5-HT1D-type receptors, with those of [3H]5-HT in membrane preparations of calf substantia nigra, C6 glioma cells expressing h5-HT1D alpha, and L929 cells expressing h5-HT1D beta receptors. [3H]Alniditan revealed very rapid association and dissociation binding kinetics and showed slightly higher affinity (Kd = 1-2 nM) than [3H]5-HT. We investigated 25 compounds for inhibition of [3H]alniditan and [3H]5-HT binding in the three membrane preparations; Ki values of the radioligands were largely similar, although some subtle differences appeared. Most compounds did not differentiate between 5-HT1D alpha and 5-HT1D beta receptors, except methysergide, ritanserin, ocaperidone, risperidone, and ketanserin, which showed 10-60-fold higher affinity for the 5-HT1D alpha receptor. The Ki values of the compounds obtained with 5-HT1D receptors in calf substantia nigra indicated that these receptors are of the 5-HT1D beta-type. We demonstrated that alniditan is a potent agonist at h5-HT1D alpha and h5-HT1D beta receptors; its properties probably underlie its cranial vasoconstrictive and antimigraine properties.  相似文献   

7.
A series of 6-alkyl-3 beta-benzyl-2-[(methoxycarbonyl)methyl]tropane analogues were synthesized and evaluated as cocaine binding site ligands at the dopamine transporter (DAT). The in vitro affinity (Ki) for the DAT of the 6-alkyl-3 beta-benzyl-2-[(methoxycarbonyl) methyl]tropane analogues was determined by inhibition of [3H]WIN 35,428 in rat caudate putamen tissue. The inhibition of dopamine uptake (IC50) was also measured for selected compounds which demonstrated moderate affinity for the dopamine transporter. The unsubstituted enantiopure analogues (-)-19a (Ki = 33 nM) and surprisingly (+)-20a (Ki = 60 nM) were found to be almost equipotent with the high-affinity binding components of cocaine and WIN 35,065-2 and exhibited slightly more potent dopamine uptake inhibition than both cocaine and WIN 35,065-2. In general, substitution at the 6-position of racemic 19a and 20a with alkyl groups was found to result in decreased activity relative to increased chain length of the substituent. The 3 beta-benzyl-2 beta-[(methoxycarbonyl)methyl]-6 beta-methyltropane (21b; Ki = 57 nM) was the only 6-alkyl derivative to exhibit moderately potent activity. The 6 beta-isomer 21b was 4-fold more potent than the 6 alpha-isomer 19b (Ki = 211 nM) and was nearly equipotent with (-)-19a and (+)-20a as well as with cocaine and WIN 35,065-2. The results of this study further demonstrate the steric constraints associated with the C(6)-C(7) methylene bridge of the tropane ring system for molecular recognition of cocaine analogues at the cocaine binding site(s) on the DAT.  相似文献   

8.
Replacement of the pyridinium ring of 6,11-ethanobenzo[b]quinolizinium cations with thiazolium (4a and 4b) and N-methylimidazolium (4c and 4d) resulted in equipotent compounds in the [3H]TCP binding assay. The corresponding N-methyl-1,2,4-triazolium analogs were less potent in this assay. The thiazolium derivative 4b, with a Ki = 2.9 nM, is being evaluated as a possible neuroprotective N-methyl-D-aspartic acid (NMDA) antagonist.  相似文献   

9.
A series of tropane derivatives, related in structure to baogongteng A (1), an alkaloid from a Chinese herb, were synthesized. 6beta-Acetoxynortropane (5) had weak affinity (Ki 22 microM) for central (M1) muscarinic receptors in a [3H]quinuclidinyl benzilate binding assay but had extremely high affinity (Ki 2.6 nM) and selectivity for M2-muscarinic receptors expressed in CHO cells. It had 13-fold lower affinity for M4-receptors, 260-fold lower affinity for M3-receptors, and 8200-fold lower affinity for M1-receptors expressed in CHO cells. The 6beta-carbomethoxy analogue (14) of baogongteng A had only weak affinity for M2-muscarinic receptors, as did 6beta-carbomethoxynortropane (13) and 6beta-acetoxytropane (4). In transfected CHO cells, 6beta-acetoxynortropane (5) was an agonist at M2-receptors, based on a GTP-elicited decrease in affinity, and a full agonist with an IC50 of 11 nM at M4-receptors, based on inhibition of cyclic AMP accumulation, while being a full agonist at M1-receptors with an EC50 of 23 nM and a partial agonist at M3-receptors with an EC50 of 3.6 nM, based in both cases on stimulation of phosphoinositide breakdown. All of the 16 tropane derivatives had weak affinities for central alpha4beta2-nicotinic receptors with 6beta-carbomethoxynortropane (13) having the highest affinity, which was still 150-fold less than that of nicotine. 6beta-Acetoxynortropane (5) represents a potent muscarinic agonist with apparent selectivity toward M2-receptors.  相似文献   

10.
In the present study an investigation of the structure-activity relationships in 9-ethylpurine derivatives, aimed at preparing A1, A2A, A2B, and A3 selective adenosine receptor antagonists, was undertaken. Our synthetic approach was to introduce various substituents (amino, alkoxy and alkynyl groups) into the 2-, 6-, or 8-positions of the purine ring. The starting compounds for each series of derivatives were respectively: 2-iodo-9-ethyladenine (9), obtained from 2-amino-6-chloropurine (5); 9-ethyl-6-iodo-9H-purine (11), 8-bromo-9-ethyl-adenine (3) and 8-bromo-9-ethyl-6-iodo-9H-purine (13), obtained from 9-ethyl-adenine (2). The synthesized compounds were tested in in vitro radioligand binding assays at A1, A2A, and A3 human adenosine receptor subtypes. Due to the lack of a suitable radioligand the affinity of the 9-ethyladenine derivatives at A2B adenosine receptors was determined in adenylyl cyclase experiments. In general, the series of 9-ethylpurine derivatives exhibited a similar pharmacological profile at A1 and A2A receptors whereas some differences were found for the A3 and the A2B subtypes. 8-Bromo-9-ethyladenine (3) showed higher affinity for all receptors in comparison to the parent compound 2, and the highest affinity in the series for the A2A and A2B subtypes (Ki = 0.052 and 0.84 microM, respectively). Analyzing the different substituents, a phenethoxy group in 2-position (10a) gave the highest A2A versus A2B selectivity (near 400-fold), whereas a phenethylamino group in 2- and 6-position (10b and 12b, respectively) improved the affinity at A2B receptors, compared to the parent compound 2. The presence of a hexynyl substituent in 8-position led to a compound with good affinity at the A3 receptor (4d, Ki = 0.62 microM), whereas (ar)alkynyl groups are detrimental for the potency at the A2B subtype. These differences give raise to the hope that further modifications will result in the development of currently unavailable leads with good affinity and selectivity for A2B adenosine receptors.  相似文献   

11.
Benzocycloalkane derivatives 1-4 were synthesized as new conformationally restricted melatoninergic ligands. They were prepared by the reaction of the ketones 5 with diethylcyanophosphonate and the reduction of the corresponding cyano compounds or by the Wittig reaction and Curtius degradation to obtain the amines 8. The 1-Cyanobenzocyclobutane derivative was obtained by the benzyne cyclisation reaction. The amines 8 were acylated with acetyl, propionyl or butyryl groups. The affinity of the compounds for chicken brain melatonin receptors was evaluated using 2-[125I]-iodomelatonin as the radioligand. The indanyl (2b,c), tetralin (3a-c) and benzocycloheptane (4c) derivatives were potent compounds with nanomolar affinity and an important enantioselectivity of the receptor was observed with the (+) enantiomers 2b and 3b.  相似文献   

12.
A new chemical class of potential atypical antipsychotic agents, based on the pharmacological concept of mixed dopamine D2 receptor antagonism and serotonin 5-HT1A receptor agonism, was designed by combining the structural features of the 2-(N,N-di-n-propylamino)tetralins (DPATs) and the 2-pyrrolidinylmethyl-derived substituted benzamides in a structural hybrid. Thus, a series of 35 differently substituted 2-aminotetralin-derived substituted benzamides was synthesized and the compounds were evaluated for their ability to compete for [3H]-raclopride binding to cloned human dopamine D2A and D3 receptors, and for [3H]-8-OH-DPAT binding to rat serotonin 5-HT1A receptors in vitro. The lead compound of the series, 5-methoxy-2-[N-(2-benzamidoethyl)-N-n-propylamino]tetralin (12a), displayed high affinities for the dopamine D2A receptor (Ki = 3.2 nM), the dopamine D3 receptor (Ki = 0.58 nM) as well as the serotonin 5-HT1A receptor (Ki = 0.82 nM). The structure-affinity relationships of the series suggest that the 2-aminotetralin moieties of the compounds occupy the same binding sites as the DPATs in all three receptor subtypes. The benzamidoethyl side chain enhances the affinities of the compounds for all three receptor subtypes, presumably by occupying an accessory binding site. For the dopamine D2 and D3 receptors, this accessory binding site may be identical to the binding site of the 2-pyrrolidinylmethyl-derived substituted benzamides.  相似文献   

13.
A series of 9-methyl-3 beta-phenyl-2-substituted-9-azabicyclo[3.3.1]nonane derivatives were synthesized and evaluated as cocaine-binding site ligands at the dopamine transporter (DAT). The conformation of the bicyclic structures and the stereochemistry of the substituents were determined by NMR and X-ray crystallography. The in vitro binding affinity (Ki) of the 9-azabicyclo[3.3.1]nonane derivatives was measured in rat caudate-putamen tissue, and they were found to be 100-fold (Ki = 2-14 microM) less potent than cocaine and other tropane analogs. From these results it is evident that the cocaine-binding site at the DAT is very sensitive to structural modifications of the unsubstituted methylene bridge [C(6)-C(7)] of cocaine and cocaine-like compounds.  相似文献   

14.
In this paper we describe the synthesis of a series of alpha-substituted analogues of the potent and selective group II metabotropic glutamate receptor (mGluR) agonist (1S,1'S,2'S)-carboxycyclopropylglycine (2, L-CCG 1). Incorporation of a substitutent on the amino acid carbon converted the agonist 2 into an antagonist. All of the compounds were prepared and tested as a series of four isomers, i.e., two racemic diastereomers. On the basis of the improvement in affinity realized for the alpha-phenylethyl analogue 3, in this paper we explored the effects of substitution on the aromatic ring as a strategy to increase the affinity to these compounds for group II mGluRs. Affinity for group II mGluRs was measured using [3H]glutamic acid (Glu) binding in rat forebrain membranes. Antagonist activity was confirmed for these compounds by measuring their ability to antagonize (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid-induced inhibition of forskolin stimulated cyclic-AMP in RGT cells transfected with human mGluR2 and mGluR3. Meta substitution on the aromatic ring of 3 with a variety of substituents, both electron donating (e.g., methyl, hydroxy, amino, methoxy, phenyl, phenoxy) and electron withdrawing (e.g., fluorine, chlorine, bromine, carboxy, trifluoromethyl) gave from 1.5- to 4.5-fold increases in affinity. Substitution with p-fluorine, as in 97 (IC50 = 0.022 +/- 0.002), was the exception. Here, a greater increase in affinity was realized than for either the ortho- or meta-substituted analogues; 97 was the most potent compound resulting from monosubstitution of the aromatic. At best, only modest increases in affinity were realized for certain compounds bearing either two chlorines or two fluorines, and two methoxy groups gave no improvement in affinity (all examined in a variety of substitution patterns). Three amino acids, 4, 5, and 104, were resolved into their four constituent isomers, and affinity and functional activity for group II mGluRs was found to reside solely in the S,S,S-isomers of each, consistent with 1. With an IC50 = 2.9 +/- 0.6 nM, the resolved xanthylmethyl compound 168 was the most potent compound from this SAR. Amino acid 168 demonstrated high plasma levels following intraperitoneal (i.p.) administration and readily penetrated into the brain. This compound, however, had only limited (approximately 5%) oral bioavailability. Systemic administration of 168 protected mice from limbic seizures produced by the mGluR agonist 3,5-dihydroxyphenylglycine, with an ED50 = 31 mg/kg (i.p., 60 min preinjection). Thus, 168 represents a valuable tool to study the role of group II mGluRs in disease.  相似文献   

15.
Although the beta-adrenergic antagonist propranolol (1) binds at rodent 5-HT1B serotonin receptors, it displays low affinity (Ki > 10,000 nM) for its species homologue 5-HT1D beta (i.e., h5-HT1B) receptors. The structure of propranolol was systematically modified in an attempt to enhance its affinity for the latter population of receptors. Removal of the alkyl hydroxyl group, shortening of the O-alkyl chain from three to two methylene groups, and variation of the terminal amine substituent resulted in compounds, such as N-monomethyl-2-(1-naphthyloxy)-ethylamine (11; Ki = 26 nM), that display significantly higher h5-HT1B affinity than propranolol. Compound 11 was shown to bind equally well at human 5-HT1D alpha (h5-HT1D) receptors (Ki = 34 nM) and was further demonstrated to possess h5-HT1B agonist character in an adenylate cyclase assay. It would appear that such (aryloxy)alkylamines may represent a novel class of 5-HT1D receptor agonists.  相似文献   

16.
The [3H]resiniferatoxin (RTX) binding assay using membrane preparations has been used to identify and characterize the vanilloid receptors in the central and peripheral nervous system of different species. In the present study, using cultured adult rat dorsal root ganglion neurons either in suspension or attached to the tissue culture plates, we developed an assay to measure specific [3H]RTX binding by the intact cells. We were able to characterize the vanilloid binding characteristics of the neurons and compared those to the properties of vanilloid binding sites present in rat dorsal root ganglia membrane preparations. We found that [3H]RTX bound with similar affinity and positive cooperativity to attached neurons (cultured for 5 days before being assayed), neurons in suspension (using a filtration assay) and dorsal root ganglion membrane preparations. Dissociation constants obtained in the three assays were 47.6 +/- 3.5 pM, 38.4 +/- 3.1 pM and 42.6 +/- 3.1 pM, respectively. The cooperativity indexes determined by fitting the data to the Hill equation were 1.73 +/- 0.11, 1.78 +/- 0.12 and 1.78 +/- 0.09, respectively. The maximal binding capacity was 0.218 +/- 0.026 fmol/10(3) cells and 0.196 +/- 0.021 fmol/10(3) cells in the case of the attached cells and cells in suspension, respectively. Nonradioactive RTX, capsaicin, capsazepine and resiniferonol 20-homovanillylamide fully displaced specifically bound [3H]RTX from cells in suspension with Ki and Hill coefficient values of 42.5 +/- 5.3 pM, 2.06 +/- 0.16 microM, 3.16 +/- 0.21 microM and 32.4 +/- 4.1 nM and 1.79 +/- 0.17, 1.68 +/- 0.06, 1.72 +/- 0.11 and 1.81 +/- 0.12, respectively. Structure-activity analysis of different vanilloid derivatives revealed that the various compounds have distinct potencies for receptor binding and inducing 45Ca uptake in rat dorsal root ganglion neurons. Affinities for receptor binding and stimulation of 45Ca uptake of RTX, resiniferonol 20-homovanillylamide, RTX-thiourea, tinyatoxin, phorbol 12,13-dibenzoate 20-homovanillylamide and capsaicin were 38.5 +/- 2.9 pM, 25.7 +/- 3.0 nM, 68.5 +/- 3.8 nM, 173 +/- 25 pM, 7.98 +/- 0.83 microM and 4.93 +/- 0.35 microM as compared to 0.94 +/- 0.12 nM, 26.5 +/- 3.5 nM, 149 +/- 30 nM, 1.46 +/- 0.25 nM, 1.41 +/- 0.48 microM and 340 +/- 57 nM. Computer fitting of the data yielded Hill coefficient values indicating positive cooperativity of receptor binding; however, stimulation of 45Ca uptake appeared to follow a non-cooperative mechanism of action. The competitive capsaicin antagonist capsazepine inhibited specific binding of [3H]RTX by rat dorsal root ganglion membrane preparations with Ki and Hill coefficient values of 3.89 +/- 0.38 microM and 1.74 +/- 0.11. On the other hand it inhibited the induction of 45Ca uptake into the cells induced by capsaicin and RTX in a non-cooperative fashion with Ki values of 271 +/- 29 nM and 325 +/- 47 nM. Our results show that the membrane binding assay relates to the reality of receptor function in the intact, cultured neurons, both in terms of affinity and positive cooperativity. However the different vanilloid derivatives displayed markedly distinct structure-activity relations for high affinity receptor binding and stimulation of 45Ca uptake into rat dorsal root ganglion neurons. Among various explanations for this discrepancy, we favor the possibility that the two assays detect distinct classes of the vanilloid (capsaicin) receptor present in primary sensory neurons.  相似文献   

17.
The adenosine antagonist 9-chloro-2-(2-furanyl)[1,2,4]triazolo[1, 5-c]quinazolin-5-amine (CGS 15943) binds nonselectively to human A1, A2A, and A3 receptors with high affinity. Acylated derivatives and one alkyl derivative of the 5-amino group and other modifications were prepared in an effort to enhance A2B or A3 subtype potency. In general, distal modifications of the N5-substituent were highly modulatory to potency and selectivity at adenosine receptors, as determined in radioligand binding assays at rat brain A1 and A2A receptors and at recombinant human A3 receptors. In Chinese hamster ovary cells stably transfected with human A2B receptor cDNA, inhibition of agonist-induced cyclic AMP production was measured. An N5-(2-iodophenyl)acetyl derivative was highly selective for A2A receptors. An (R)-N5-alpha-methyl(phenylacetyl) derivative was the most potent derivative at A3 receptors, with a Ki value of 0.36 nM. A bulky N5-diphenylacetyl derivative, 13, displayed a Ki value of 0. 59 nM at human A3 receptors and was moderately selective for that subtype. Thus, a large, nondiscriminating hydrophobic region occurs in the A3 receptor in proximity to the N5-substituent. A series of straight-chain N5-aminoalkylacyl derivatives demonstrated that for A2B receptors the optimal chain length occurs with three methylene groups, i.e., the N5-gamma-aminobutyryl derivative 27 which had a pA2 value of 8.0 but was not selective for A2B receptors. At A1, A2A, and A3 receptors however the optimum occurs with four methylene groups. An N5-pivaloyl derivative, which was less potent than 27 at A1, A2A, and A3 receptors, retained moderate potency at A2B receptors. A molecular model of the 27-A2B receptor complex based on the structure of rhodopsin utilizing a "cross-docking" procedure was developed in order to visualize the environment of the ligand binding site.  相似文献   

18.
We have developed and applied a computational strategy to increase the affinity of fullerene-based inhibitors of the HIV protease. The result is a approximately 50-fold increase in affinity from previously tested fullerene compounds. The strategy is based on the design of derivatives which may potentially increase hydrophobic desolvation upon complex formation, followed by the docking of the hypothetical derivatives into the HIV protease active site and assessment of the model complexes so formed. The model complexes are generated by the program DOCK and then analyzed for desolvated hydrophobic surface. The amount of hydrophobic surface desolvated was compared with a previously tested compound, and if this amount was significantly greater, it was selected as a target. Using this approach, two targets were identified and synthesized, using two different synthetic approaches: a diphenyl C60 alcohol (5) based on a cyclopropyl derivative of Bingel (Chem.Ber. 1993, 126, 1957-1959) and a diisopropyl cyclohexyl C60 alcohol (4a) as synthesized by Ganapathi et al. (J. Org.Chem. 1995, 60, 2954-2955). Both showed tighter binding than the originally tested compound (diphenethylaminosuccinate methano-C60, Ki = 5 microM) with Ki values of 103 and 150 nM, respectively. In addition to demonstrating the utility of this approach, it shows that simple modification of fullerenes can result in high-affinity ligands of the HIV protease, for which they are highly complementary in structure and chemical nature.  相似文献   

19.
The synthesis and the in vitro receptor affinity for sigma 1 and opiod receptors of the two diastereoisomers of (+)-cis-MPCB namely, (+)-cis-(1'S,2'R)-6,11-Dimethyl-1,2,3,4,5,6 -hexahydro-3-[[2'-(methoxycarbonyl)-2'-phenylcyclopropyl]methyl]-2 ,6 -methano-3-benzazocin-8-ol, (1'S,2'R)6a and (+)-cis-(1'R,2'S)-6,11-Dimethyl-1,2,3,4,5,6-hexahydro-3- [[2-(methoxycarbonyl)-2'-phenylcyclopropyl]methyl]-2,6-methano-3-+ ++benzazocin-8 -ol, (1'R,2'S)6a are reported. Affinities of (1'S,2'R)6a and (1'R,2'S)6a were compared with those of the (-)-cis-diastereoisomers of MPCB(1), and of its p-Cl phenyl derivative CCB(2). The (+)-cis-N-normetazocine derivatives showed higher affinity for the sigma 1 sites, labeled with [3H]-(+)-pentazocine than the corresponding (-)-cis- analogs. In particular, compound (1'S,2'R)6a showed a Ki = 66.7 nM for sigma 1 receptor, associated with a good selectivity for sigma 1 with respect to kappa, mu, delta opioid receptors subtypes (Ki = > 1,000 nM). Analysis of the data seem to support the hypothesis that the (+)-cis-N-normetazocine nucleus posses a specific enantioselectivity for sigma 1 sites, when supporting bulkier N-substituents functionalized with a carboxy ester group.  相似文献   

20.
An amidrazonophenylalanine derivative LB30057 (2) was identified as a potent (Ki = 0.38 nM), selective, and orally active thrombin inhibitor. As a continuation of studies into benzamidrazone-based thrombin inhibitors, we have structurally modified compound 2 by replacing the naphthyl group with a variety of hydrophobic moieties. This study led to discovery of several compounds with significantly enhanced potency in thrombin inhibition without sacrificing selectivity against trypsin and oral absorption. The highest activity was obtained with compound 23 (Ki = 0.045 nM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号