首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Construction of dams causes reduced flow velocities, inducing gradual deposition of sediments carried by the inflowing stream, and resulting in sedimentation and ultimately diminishing reservoir storage capacity. This study focuses on sedimentation of Hirakud Reservoir in Odisha, India, using available reservoir capacity and numerical simulation data. Reduced trap efficiency, observed and projected capacity curves, rising reservoir bed level and the capacities of the different storage zones for various projected years are analysed. The area‐reduction method indicates the loss in the live, gross and dead storage will be 58%, 63% and 100%, respectively, of their original capacities by 2057, which represents 100 years of impounding of water in the reservoir. If the present sediment inflow rate continues without regular flushing of the deposited sediment, it is predicted the reservoir bed level will rise to the full reservoir level of 192.02 m by the year 2110. Brune's trap efficiency and step method indicate the gross storage zone of Hirakud Reservoir will be completely depleted by the end of 2110, with the trap efficiency reduced to zero. The empirical area‐reduction method is found to be more suitable for determining the storage capacities of Hirakud Reservoir in the absence of sedimentation survey data. An attempt was also made to solve the combined hydrodynamic and sediment transport equations numerically to predict morphological changes in Hirakud Reservoir. The finite‐element code TELEMAC‐2D and finite‐volume code for SISYPHE, respectively, were applied to solve the above set of equations in order to predict the bed profiles at different reservoir cross sections for the period of 1958–2008. Analysis of the simulated results demonstrates that, considering the model inputs, the model performs well in simulating the morphology and dynamic characteristics of a reservoir. Projection of the numerical results indicates a complete loss of reservoir operational life due to sedimentation by around 2150.  相似文献   

2.
Many reservoirs provide multiple benefits to people around the world, in addition to primary uses such as irrigation. Thus, reservoir management should address their multiple uses. The water quality of ten irrigation reservoirs in Sri Lanka was examined in the present study with the objective of better understanding the effects of hydrological regimes on reservoir water quality and trophic state. Basic limnological parameters pertinent to the nutrient loads to, and trophic state of, the reservoirs were collected from June 2013 to February 2016. The sampling period was arbitrarily divided into two periods of approximately similar duration (period 1 = June 2013–September 2014; period 2 = October 2014–February 2016) to investigate whether or not there was a seasonal variation in the water quality parameters. Although temporal and spatial variations were observed, most water quality parameters were within the levels acceptable for drinking water standards. The 10 reservoirs were also ordinated by principal component analysis (PCA) on the basis of the water quality parameters of the two sampling periods in a two‐dimensional score plot. Reservoirs in the first principal component (PC1) axis were represented by negative scores attributable to the dissolved oxygen concentration and pH and, to a lesser extent, by electrical conductivity and chlorophyll‐a concentration. Positive scores in PC1 were represented by reservoirs with a score loading attributable to alkalinity, nitrate concentration, Secchi depth, temperature and seston weight and, to a lesser extent, from the total phosphorus concentration. There was a significant negative correlation of PC1 scores with relative reservoir water‐level fluctuation (RRLF; the ratio of mean reservoir water‐level amplitude to mean reservoir depth). Furthermore, Carlson's trophic index also were influenced by RRLF, although not by hydraulic retention time (HRT), indicating allochthonous nutrient inputs into the irrigation reservoirs were mainly governed by RRLF, but not by HRT. Thus, the results of the present study provide useful insights into achieving desirable reservoir water quality through the manipulation of the hydrological regime.  相似文献   

3.
受2019年台风"利奇马"的影响,地处黄河下游的大汶河流域普降暴雨,支流柴汶河、牟汶河水位迅猛上涨,水库水位超限,台风暴雨影响造成经济损失严重。本文根据大汶河流域56个雨量站、水文站等多年水文资料,从降雨特征、洪水特性、水工程调度、地下水等方面予以分析探讨,旨在为进一步完善大汶河流域防洪减灾预案提供科学依据。  相似文献   

4.
Multi‐frequency reservoir survey techniques offer a technological means to verify historic sediment delivery estimates and to quantify the effectiveness of conservation implementation. A multi‐year, multi‐frequency acoustic survey of Granger Lake, Texas, was undertaken to demonstrate the application of this technology and the value of its derivatives. Granger Lake is a drinking water resource for surrounding cities, perceived as being threatened by agriculture‐driven sedimentation, and the focus of a watershed conservation implementation programme. Objectives of the present study were to (i) conduct sub‐bottom profiling to verify the pre‐impoundment capacity of the reservoir; (ii) plot historic bathymetric datasets, including pre‐impoundment surface determined by low‐frequency acoustics, identifying any changes in annualized sediment delivery curve to date; and (iii) quantify changes in sediment delivery resulting from agricultural conservation practices implemented as part of the Granger Lake Watershed Assessment and Implementation Project. The sediment‐profiling results indicated that the pre‐impoundment design estimates were overstated, thereby skewing historic sediment delivery estimates. Adjusting the 1980 pre‐impoundment volume of Granger Lake indicated that the historic trend in Granger Lake sedimentation/water storage loss was markedly less acute. Although sedimentation did accelerate somewhat in the mid‐1990s, the intervals following the 1995–2002 survey period revealed a trend of decelerating sedimentation. Reduced sedimentation as a response to conservation implementation is not distinguishable beyond what is seen as a steady downward trend in sediment delivery. Insights from this study highlight the important role of multi‐frequency reservoir survey techniques for refining watershed conservation and/or reservoir sustaining strategies.  相似文献   

5.
小浪底水库开发任务的库容要求分析   总被引:2,自引:0,他引:2  
分析认为,小浪底水库逐步抬高汛期水位沙和调水调沙运用,库区为锥体淤积,由下而上、由低而高逐步淤积,比降变小,主汛期运用水位254m,形成高滩槽形态,不影响三门峡坝下水位;支流拦沙库容充分淤积,拉沙库容约80亿m^3,若水库一镒抬高水位或主汛期高水位蓄水拦沙,水库为三角和带状淤积,在淤积向坝前推进过程中,洲面淤2高,淤积上延,河床比降增大。为了不影响三门峡坝下水位,主沁期运用水位要降至240~260  相似文献   

6.
Typhoon Aere in 2004 induced severe sedimentation and loss of storage capacity of the Shihmen Reservoir in northern Taiwan. The resulting dramatic increase in the turbidity of the water seriously affected the water supply. To effectively maintain the stability of the water supply and maintain the reservoir’s storage capacity, the government of Taiwan began to plan and construct a series of improvement measures, such as a sediment flushing tunnel, the JhongJhuang Bank-Side Reservoir, and the Amuping Desilting Tunnel. However, previous studies only focused on the impact of the sediment flushing tunnel and the Amuping Desilting Tunnel on the downstream riverbed, and did not consider the possibility of increasing sediment discharge after the completion of the JhongJhuang Bank-Side Reservoir. In addition, climate change will cause the intensity of extreme rainfall to increase enormously in the future. That rainfall and extra sediment flushing will challenge the existing flood prevention facilities. Therefore, this study considered that the JhongJhuang Bank-Side Reservoir will increase sediment discharge of the Shihmen Reservoir, and used dynamical downscaling extreme typhoon data of climate change under the RCP 8.5 scenario to explore the flood prevention and riverbed migration of the main channels of the Dahan and Tamsui Rivers in the future. We used the rainfall–runoff model of Hydrologic Modeling System to simulate rainfall and runoff, and used the hydraulic and sediment transport model of CCHE1D to holistically simulate flood events and consequent river scouring and deposition behaviors. Our results showed that the projected peak discharge during the late 21st century (2075 to 2099) will be at least 50% higher than that during the baseline (1979 to 2003) period. In terms of flood prevention, the potential of overbank flooding will increase in the downstream area, and the trend of long-term change in the riverbed will be dominated by degradation (-0.489 ± 0.743 m) in the future. The improvement measures will have a limited impact on riverbed migration (0.011 ± 0.094 m) in the Dahan and Tamsui Rivers. After the operation of the JhongJhuang Bank-Side Reservoir, the Shihmen Reservoir is expected to increase the sediment discharge ratio by 70% during floods, and it will not cause excessive water turbidity that may affect downstream water supply.  相似文献   

7.
Mosul Dam, located on the Tigris River north of Iraq, is experiencing sedimentation problems, especially near the Al‐Jazeera pumping station that supplies the irrigation water for the Al‐Jazeera project. The sources of the sediment accumulated within the reservoir are from the Tigris River, as well as ten side valleys on both sides of the reservoir. The sediment inflow rate into the reservoir and the released values are considered on the basis of the operation schedule of the dam for the considered period from 1986 to 2011. The sediment loads were estimated on the basis of available measurements and estimated literature values. The HEC‐RAS 4.1 model was used for flows and sediments in the main river and reservoir. The model was calibrated for flow simulations (coefficient of determination r2 = 0.87) and sediment routing based on bed level, (with resultant r2 = 0.98 and Mean Absolute Deviation of 0.95). The Ackers–White equation was used in the HEC‐RAS model for sediment routing because of the wide range of sediment sizes in the study case. The resultant total accumulated sediment load volume was 1.13 km3, a value that is very close to the measured values (1.143 km3) obtained from a previous bathymetric survey. Furthermore, the model indicated most of the sediment (80.7%) was deposited during the first five of the dam operation.  相似文献   

8.
李玉荣  张俊  张潇 《人民长江》2017,48(24):1-5
2013年丹江口大坝加高工程完成后,遭遇连续枯水,各年度蓄水严重不足,2017年发生明显秋汛,防汛部门科学调度,取得了统筹防洪、大坝蓄水安全与监测试验等多目标共赢的成果。通过分析汉江2017年秋汛的水雨情发展、洪水地区组成、水情预报及水库调度等,解析了汉江此次秋汛过程的降雨、洪水特性,水情预报精度水平及水库调度的成效。分析表明:汉江9月上中旬降雨起筑底作用,9月23日开始的连续强降雨过程累计雨量大、覆盖面积广,直接导致汉江连续涨水过程;丹江口入库洪水最大15 d洪量接近秋季10 a一遇,丹皇区间最大7 d洪量超过秋季20 a一遇;丹江口水库实施拦洪削峰调度,削峰率均在50%以上,削减中游干流主要站洪峰水位约2 m,避免了中下游分洪民垸和杜家台分洪。  相似文献   

9.
Studies addressing the self‐sustainability of water bodies are crucial from the perspective of sustainable water resources management. An artificial water body is vulnerable to drastic water level changes resulting from various hydroclimatical and geological factors. It is incumbent therefore to rigorously investigate the effects of these factors in order to assess the response of the water body, consequent to a wide range of scenarios. This study focuses on the self‐sustainability of a water body, based on the water budget approach, and taking into account various hydroclimatical and geological factors in the study area. As the available evaporation data shared a very short (~2 years) common time frame with the other variables, evaporation was modelled using regression and artificial neural network models. The study results indicated the water body would be self‐sustainable under the extreme climatical and hydrological conditions considered. While seepage exhibited substantial impacts on the storage of the water body, evaporation was found to have only marginal impacts.  相似文献   

10.
Although surface waterbodies are water sources for socio‐economic activities and ecosystems, their functions are threatened by sedimentation. Sedimentation of lakes and reservoirs can result in a loss of storage capacity and altered water quality. The present study assessed the sedimentation status of Lake Naivasha, Kenya, based on sediment distribution and accumulation over the past 50 years, using a Bathymetric Survey System (BSS). The BSS uses multi‐frequency Acoustic Profiling System (APS) to map recently deposited sediments. Sediment core samples were collected with a vibe‐ coring device and dated. Sediment layers corresponding to a period of the past 20 and 50 years were identified. Sediment cores and acoustic images were subsequently used to determine sediment thickness within the lake. The collected depth data from multi‐frequency APS, and dated cores were processed in DepthPic and Surfer software. The sediment depth was extracted in DepthPic, while the sediment volume and distribution were generated from Surfer software. The results from present study indicated that sediment distribution varied from one part of the lake to another for the past 20 and 50 years. High sediment thickness observed in the south‐west and eastern parts of the lake. Between 1996–2016 and 1966–2016 periods, the maximum accumulated sediment thickness was found to be about 0.55 and 1.9 m, with an average sediment thickness of 0.25 and 0.56 m, respectively. The mean sediment load corresponding to the 1966–1996 and 1996–2016 periods was 2.78 × 105 and 4.61 × 105 t/year, respectively. It was found that sediment load into Lake Naivasha has been increasing in the recent past. Based on the present the study, it was found that combined use of BSS, sediment cores and dating can be adopted in many lakes and reservoirs to determine sediment thicknesses even where no prior bathymetric surveys exist for comparison.  相似文献   

11.
三峡水库蓄水对其库区降雨量-径流量关系变化的影响程度对于库区水资源规划有着重要意义。选用万县水文站1977-2017共计41 a的降雨量和径流量实测值,确定了各蓄水阶段降雨量和径流量的分布情况,引入Copula函数模型计算各阶段的联合分布函数,定量分析水库调蓄对两者关系的影响,预测了2017年后水文情势。结果表明:采用Copula函数联合分布数学模型能较好计算三峡库区万州段不同阶段的降雨量-径流量关系。万州段从天然河道变为库区河道后,降雨量-径流量关系发生了较大变化。在天然河道阶段,降雨量和径流量均采用皮尔逊III型分布最为合理;三峡水库工程施工期和初步蓄水阶段,降雨量变为Gumbel分布,径流量变为对数正态分布;试验性蓄水阶段,降雨量变为对数正态分布,径流量恢复至皮尔逊III型分布。年降雨量和年径流量在施工期及初步蓄水阶段较天然河道阶段均有所减少,年降雨量变幅区间减小38.4%,年径流量变幅区间减小20.6%;试验性蓄水阶段的年降雨量增多,变幅区间增大24.5%,而年径流量减少,变幅区间减小57%。通过该数学模型预测三峡库区万州段今后年径流量不小于3 490×108 m3(±5%),最大不超过4 055×108 m3(±5%);年降雨量不小于1 048 mm(±5%),最大值不超过1 842 mm(±5%)。该研究可为三峡库区万州段流域水资源开发利用与水文序列的重构工作等提供科学依据,也可为其他库区内河道的水文特性变化关系的研究提供参考。  相似文献   

12.
This paper documents vegetation changes in a floodplain area lying next to a newly constructed reservoir on the River Yamuna (near Delhi), about a kilometre downstream of an older, silted‐up reservoir. The study site was a rectangular depression bounded by dykes on three sides and agricultural fields on the fourth. The composition and abundance of species in the plant community were observed over a ten year period (1986–1996) and changes in water level both at the study site and in the reservoir were followed. Site hydrology was governed by water level changes caused by reservoir operation with effect from 1990, when it was first filled to capacity and water began to seep through the dyke. The study area experienced increasing depth, duration and frequency of flooding. Species richness peaked in 1992, and the plant community developed four distinct zones closely associated with the hydrological gradient. Patchiness also increased though Typha angustata patches merged over time to form a continuous expanse. The microtopography of the study site, and hydrological and plant‐induced changes were largely responsible for community changes. Dyke compaction over time resulted in cessation of seepage and the study site gradually dried up by 1998, with a consequent loss of plant species. The study concludes that the hydrological regime, rather than physical connectivity with the river, may play the dominant role in developing and maintaining plant community structure in floodplain wetlands. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.

Dams accumulate sediment by interrupting the continuity of rivers, resulting in a loss of reservoir water storage capacity and decreased productive life. These issues raise a growing concern about the decreasing benefits of projects. This paper contributes to the implementation of sediment transit strategies and operating rules of reservoirs to reduce overflows and recover the technical–economic viability of sedimented reservoirs by maintaining ecological flow. The main difficulty lies in the fact that sedimentation of the reservoir limits the mobility of dredging equipment and blocks the intake. To regain the viability of the reservoir, the commonly used strategies to manage water resources and reservoir sedimentation were analyzed. To control reservoir sedimentation and restore the generation capacity, different sediment management strategies were implemented and evaluated at the entrance, body of the reservoir and intake; these strategies included reduction of the entry of sediments, restoration of the storage capacity, clearing of the water intake for the turbines to restore power generation, trash rack cleaning during the power generation process and modification of the hydroelectric power plant operating rules to optimize the economic income. The implemented strategies successfully reduced overflows from 88 to 40% in 3 years and stabilized the reservoir storage capacity by balancing the inflow and removal of sediments. Although the water intake for the turbines was cleaned, accumulation increased in other areas of the reservoir. Finally, root cause analysis (RCA) was employed, and solutions were proposed to increase the capacity of the reservoir and reduce overflows to 15%.

  相似文献   

14.
The reinstatement of natural flow regimes is a rapidly emerging issue in river restoration worldwide. In northern Victoria, Australia, efforts are presently underway to restore a natural, intermittent flow regime to several streams which have received perennial diversions for both irrigation and stock and domestic water‐supplies for over 100 years. A pipeline to deliver water to landholders will significantly reduce transmission losses throughout the system allowing irrigation canals and diversion weirs to be decommissioned. The motivation for flow alteration in this system lies primarily in reducing inefficiencies in water delivery which, in turn, will be used to meet escalating demands on water resources. The ecological impact of the flow regime shift on these streams is likely to be substantial. This study utilized an existing artificial hydrological gradient (from perennial to intermittent) in two creek systems, to explore relationships between flow regime and a range of ecological variables. These data provide a benchmark against which to assess ecological changes once flow has been altered and form the basis for predicting changes that can assist future management decisions. Data collected from 10 sites across a strong hydrological gradient detected clear differences in geomorphology, water quality and biotic assemblages (macrophytes, macroinvertebrates and fish). By examining the relationship between flow regime and the distribution of biota we identify both the positive and negative outcomes of restoring naturally intermittent flow regimes within artificially perennial lowland streams. The reinstatement of intermittent flow regimes in artificially perennial streams will continue in many parts of the world as water delivery via these systems becomes increasingly uneconomical. While flow restoration may in principle be regarded as a positive step, these findings emphasize the need to consider fully the ecological consequences of restoring historical hydrological regimes to streams within the context of other human induced catchment disturbances. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Effective management options for mitigating the loss of reservoir water storage capacity to sedimentation depend on improved predictions of bed‐load discharges into the reservoirs. Most predictions of bed‐load discharges, however, are based on the assumption that the rates of bed‐load sediment availability equal the transport capacity of the flow, ignoring the spatio‐temporal variability of the sediment supply. This paper develops a semiquantitative method to characterize bed‐load sediment transport in alluvial channels, assuming a channel reach is non‐supply limited when the bed‐load discharge of a given sediment particle‐size class is functionally related to the energy that is available to transport that fraction of the total bed‐load. The method was applied to 22 alluvial stream channels in the USA to determine whether a channel reach had a supply‐limited or non‐supply‐limited bed‐load transport regime. The non‐supply‐limited transport regime was further subdivided into two groups on the basis of statistical tests. The results indicated the pattern of bed‐load sediment transport in alluvial channels depends on the complete spectrum of sediment particle sizes available for transport rather than individual particle‐size fractions represented by one characteristic particle size. The application of the method developed in this paper should assist reservoir managers in selecting bed‐load sediment transport equations to improve predictions of bed‐load discharge in alluvial streams, thereby significantly increasing the efficiency of management options for maintaining the storage capacity of waterbodies.  相似文献   

16.
针对水库调度需要,以闹德海水库为背景开展入库沙量预报研究。首先分析水库的入库水沙特性,以确定入库沙量的主要影响因素;进而研究建立基于水文要素的BP神经网络入库沙量预测模型,并利用历史场次洪水资料进行训练学习。结果表明所选择的产沙因子基本能够反映流域降雨-产沙-输沙过程的传递关系,模型可用于入库沙量预报,指导水库实时水沙调度决策。  相似文献   

17.
Using a hydrologic model this study estimated rainwater storages in field-scale on-farm reservoir (OFR) systems at two locations: (1) Fort Worth, Texas, US; (2) Kharagpur, West Bengal, India. The water storages were estimated for variable OFR sizes: 1%, 5%, 10%, 15%, and 25% of the farm area. Water losses through seepage and evaporation were estimated using variable saturated hydraulic conductivity conditions: 0.33, 0.64, 1.3, 5 cm/h, which corresponded to the ranges of hydraulic conductivity of loam, sandy loam, loamy sand, and sandy soils, respectively. Results indicated that the water loss through evaporation was dominant at the first location, while seepage was at the second location. Changing the OFR sizes captured 5 to 28% of the total rainfall received in the farm area of the first location and 20–40% at the second location. Finally, a comparative economic analysis was made between a distributed OFR system and a centralized large reservoir that indicated that the distributed OFR system benefits exceeded the benefits of a large reservoir.  相似文献   

18.
The present study examines the impact of an altered rainfall regime on surface and groundwater resources at a gauged mountainous experimental watershed located on the eastern side of Penteli Mountain, in the prefecture of Attica, Greece. The study period concerns the hydrological years from October 2003 to September 2008. A decrease in the annual rainfall depth in the first years and in particular the distinct decrease in winter rainfall has led to a reduction in runoff and groundwater reserves. The authors recommend an infrastructure-based management programme to ensure the sustainable use of the diminishing water resources.  相似文献   

19.
The upper Ewaso Ng’iro basin, which starts from the central highlands of Kenya and stretches northwards transcending different climatic zones, has experienced decreasing river flows for the last two decades. The Naro Moru sub-basin is used to demonstrate the looming water crisis in this water scarce river basin. The objective of the study was to show the extent of dry seasons’ irrigation water abstractions on river flows, and to assess the hydrological impact of flood storage on temporal water distribution and irrigation water management. Decreasing river flows are attributed to over-abstraction mainly for irrigating horticultural crops. The number of abstractors has increased four times over a period of 10 years. The amount of water abstracted has also increased by 64% over the last 5 years. Moreover, the proportion of unauthorized abstractions has been increasing over the years, currently at about 80% and 95% during high and low flows respectively. This has resulted in alarming conflicts among various water users. The situation is aggravated by low irrigation efficiency (25–40%) and inadequate flood storage facilities. The paper analyzes over 40 years’ observed river flow data and 5-year interval water abstraction monitoring records for 15 years. It assesses whether flood storage and management, can reduce dry seasons’ irrigation water abstractions without significantly reducing river flows to affect the sustenance of natural ecosystems downstream. The results demonstrate that flood storage and management can reduce water abstraction and increase river flows during the dry seasons, without significantly reducing high flows to affect the downstream water users. However, socio-economic, hydrological and environmental implications should be considered if a sustainable river basin water resources management strategy is to be developed and implemented. The case study of Naro Moru sub-basin is representative of the situation in the other sub-basins, and hence can be taken as a pilot basin for developing an integrated water resources management strategy that will foster socio-economic development with minimal negative hydrological impacts in the water scarce upper Ewaso Ng’iro river basin.  相似文献   

20.
Reservoirs are critical infrastructure typically built to function as designed for 50 to 100 years. The majority of U.S. Army Corps of Engineers reservoirs are more than 50 years old. The environmental, societal, and regulatory conditions surrounding the reservoir, that is, the reservoir's expected conditions, shaped its design. Many of these expectations assumed a future similar to the past. However, recent decades have experienced warming climates, cyclical changes in precipitation, the introduction of new regulations, and populations concentrating in urban environments. The design documents for nine U.S. Army Corps of Engineers were obtained to compare the expected conditions when reservoirs were authorized with the conditions experienced since the reservoir began operating. In some instances, we found large differences between expectations and reality. Average precipitation at Philpott, North Carolina was 15% less than expected whereas the sedimentation rate at Redmond, Kansas was twice the expected rate. Reservoirs can adapt to changing conditions by updating water control plans, which has occurred at five of these reservoirs in the last decade. Reallocations are sometimes needed to address more significant changes. For example, Redmond has reallocated storage space due to higher than expected sedimentation, and Falls, North Carolina is seeking reallocation due to higher than expected population growth and water demand. As conditions change, controversies and litigation around Corps reservoir management will likely continue. This highlights the importance of clearly documenting changing conditions through consistent and ongoing data collection and analysis to facilitate adapting reservoir operations in a timely manner, thereby minimizing controversy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号