首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The topology of crack tips in soda–lime–silicate glass was investigated using atomic force microscopy (AFM). Studies were conducted on cracks that were first propagated in water and then subjected to stress intensity factors either at or below the crack growth threshold. Exposure to loads at the crack growth threshold resulted in long delays to restart crack growth after increasing the stress intensity factor to higher values. After breaking the fracture specimen in two, the "upper" and "lower" fracture surfaces were mapped and compared using AFM. Fracture surfaces matched to an accuracy of better than 0.5 nm normal to the fracture plane and 5 nm within the fracture plane. Displacements between the upper and lower fracture surfaces that developed after a critical holding time were independent of distance from the crack tip, and increased with holding time. Despite the surface displacement, crack tips appeared to be sharp. Results are discussed in terms of a hydronium ion–alkali ion exchange along the crack surfaces and corrosion of the glass surface near the crack tip by hydroxyl ions.  相似文献   

2.
The nanomechanical deformations on glass surfaces near the elastic–plastic load boundary have been measured on various glasses by nanoscratching using an atomic force microscope (AFM) to mimic the mechanical interactions of polishing particles during optical polishing. Nanoscratches were created in air and aqueous environments using a 150‐nm radius diamond‐coated tip on polished fused silica, borosilicate, and phosphate glass surfaces; the topology of the nanoscratches were then characterized by AFM. Using load ranges expected on slurry particles during glass polishing (0.05–200 μN), plastic‐type scratches were observed with depths in the nm range. Nanoscratching in air generally showed deeper & narrower scratches with more pileup compared to nanoscratching in water, especially on fused silica glass. The critical load needed to observe plastic deformation was determined to range from 0.2–1.2 μN for the three glasses. For phosphate glass, the load dependence of the removal depth was consistent with that expected from Hertzian mechanics. However, for fused silica and borosilicate glass in this load range, the deformation depth showed a weak dependence with load. Using a sub‐Tg annealing technique, material relaxation was observed on the nanoscratches, suggesting that a significant fraction of the deformation was due to densification on fused silica and borosilicate glass. Repeated nanoscratching at the same location was utilized for determining the effective incremental plastic removal depth. The incremental removal depth decreased with increase in number of passes, stabilizing after ~10 passes. In water, the removal depths were determined as 0.3–0.55 nm/pass for fused silica, 0.85 nm/pass for borosilicate glass, and 2.4 nm/pass for phosphate glass. The combined nanoscratching results were utilized to define the composite removal function (i.e., removal depth) for a single polishing particle as a function of load, spanning the chemical to the plastic removal regimes. This removal function serves as an important set of parameters in understanding material removal during polishing and the resulting workpiece surface roughness.  相似文献   

3.
Despite extensive efforts to understand the toughening mechanism of rubber‐modified semicrystalline polymers, the plastic deformation event at the crack tips with an extreme deformation gradient and its correlation with phase morphology is, thus far, poorly understood. In this study, micro Fourier transform infrared measurements were adopted to give direct evidence of plastic deformation at the crack tips by the molecular orientation in nylon 6/ethylene–propylene–diene terpolymer (EPDM) blends with a distinct phase morphology. Significant plastic deformation ahead of the crack tips, manifested by a high molecular orientation, was observed in the compatibilized nylon 6/EPDM blends with fine rubber particles. Moreover, the increased transverse crack‐propagation resistance due to high molecular orientation dramatically extended the plastic deformation into adjacent regions around the crack tips; this was responsible for enhanced energy dissipation during the fracture process. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
Silica glass exhibits rate-dependent and irreversible processes during deformation and failure, resulting in inelastic effects. To explore this phenomena, molecular dynamics simulations of structural relaxation surrounding a crack tip in silica glass were performed at four different temperatures (100, 300, 600, 900 K) using a reactive force field. Per-atom stresses were found to relax during the simulation, with the highest stress relaxation occurring at 900 K. Stress relaxation was radially dependent relative to the crack tip, with stress dissipation occurring primarily within a 25–30 Å inelastic region. Within 10 Å of the crack tip, the defect concentration decreased from 0.18 to 0.09 #/nm2 during inelastic relaxation at 900 K. Conversely, the defect concentration 20 Å from the crack tip increased from 0.105 to 0.118 #/nm2 at 300 K, and from 0.113 to 0.126 #/nm2 at 600 K, which formed a defect-enriched region ahead of the crack tip. The difference in defect concentrations suggests the possibility of a stress mediated defect migration mechanism, where defects move away from the crack tip during inelastic relaxation. Additionally, defect speciation indicated that undercoordinated silica defects, such as non-bridging oxygen, were removed through the formation of higher coordination defects during relaxation. Overall, stress relaxation causes changes in the defect concentration profile near the crack tip, which has the potential to alter the properties of silica glass in the inelastic region during relaxation.  相似文献   

5.
Crack tips in thin SiO2 glass films were observed directly by high-resolution/high-voltage electron microscopy. An elliptical crack with radius of curvature ∼ 1.5 nm was observed. When the glass film with the crack was soaked in water at 90°C for 7 d, the crack tip became blunt by a process of dissolution and precipitation.  相似文献   

6.
When Griffith presented his famous theory of crack stability in elastic materials in the early twentieth century, he was unable to provide much detail on the structure of cracks at the nanometer level of resolution. Now, almost 100 years later, techniques such as transmission electron microscopy, atomic force microscope, nuclear reaction analysis, and nuclear reflection are available to achieve this level of resolution. Here, we review the kind of data obtained using these techniques and the implications of the data vis-á-vis cracks in silicate glasses. Measurements by atomic force microscopy provide information on the size of the nonlinear zone at crack tips in glass, on environmental conditions at crack tips, and on the possibility of cavity formation as a mechanism of crack growth. Examination by nuclear reaction analysis and neutron reflection of fresh fracture surfaces formed in water has yielded information on water penetration through the glass surrounding the crack tip, to a resolution of 3–5 nm. Improvement of measurement techniques in the coming years should enable us to study crack tips in glasses to even higher levels of resolution and to answer more detailed questions concerning the level of stress and the size of the nonlinear zone at the crack tip.  相似文献   

7.
Environmentally Enhanced Crack Growth in Soda-Lime Glass   总被引:4,自引:0,他引:4  
Crack growth data are presented for soda-lime glass in various chemical environments. It is shown that the same environments which govern crack growth rates in vitreous silica also do so in soda-lime glass. The slopes and positions of the crack growth curves in soda-lime glass are shown to differ from those in vitreous silica. It is hypothesized that the differences between the behavior of soda-lime glass and silica result from the effects of the modifier ions, Na+ and Ca2+, on the reactivity of the Si-O bond or through changes in the elastic properties of the bridging network. It is shown that sodium ion exchange and silica dissolution may also be important to crack growth, particularly at low crack velocities.  相似文献   

8.
The uniformity of silica nanoparticle antireflective coatings deposited from aqueous solutions on glass substrates is limited by the high surface tension and low evaporation rate of water. In this work, thin films of polyvinylpyrrolidone (PVP) were utilized as an adhesion layer to increase the uniformity and optical transmittance of silica nanoparticle coatings. The increase in adhesive force caused by the presence of the PVP layer was measured using atomic force microscopy (AFM). The micro- and nanoscale uniformities of silica nanoparticle films with and without PVP adhesion layers were characterized using scanning electron microscopy and AFM. It was found that a thin PVP adhesion layer provides the adhesion required to form uniform films of silica nanoparticles. Solar weighted transmittance of 97.6% over a wavelength range of 330–1000 nm was achieved with soda-lime glass substrates coated on both sides.  相似文献   

9.
A correlation between plastic deformation at crack tips in sodium chloride and the measured value of the fracture surface energy is presented. Plastic deformation can either aid or hinder crack growth, depending on the mode of deformation at the crack tip. If plane-stress deformation occurs, crack motion is hindered by step formation, dislocation generation, and plastic blunting of the crack tip. If plane-strain deformation occurs, crack motion is aided by stress fields that arise from the deformation. The specific surface free energy of sodium chloride, {100} plane, is estimated to be less than 0.37 J/m2.  相似文献   

10.
Sub-micro silver (Ag) precipitated in silica (SiO2) glass was prepared via spark plasma sintering (SPS), and the microstructure, mechanical properties, and thermal conductivity were investigated. The in situ formation of Ag sub-micro particles through decomposition of silver nitrate (AgNO3) was homogeneously distributed within the SiO2 matrix. By precipitation of Ag particles, larger steady-state creep deformation and plastic deformation were observed owing to the ductility of the Ag particles. Moreover, crack bridging and pull-out of Ag particles were observed during crack propagation. As a result, the fracture toughness of SiO2 glass improved with increasing Ag content. The sample with 1.4 vol% Ag sintered at 1200°C showed the highest toughness value of 2.15 ± 0.2 MPa m1/2. Larger Ag particles in the samples sintered at higher temperatures tend to deform easily, resulting in larger ductility. In addition, incorporation of Ag particles improved thermal conductivity.  相似文献   

11.
Previous studies show that stress corrosion crack growth in glass is controlled by chemically enhanced crack tip bond rupture reactions. The brittle nature of fracture in glass suggests that the region where bond rupture reactions occur must be on the order of the atomic spacings in the material. Crack growth kinetics and zeolite diffusion data were used to determine the relation between molecular size and reactivity at the crack tip. Crack growth rates in silica glass were measured in the presence of a series of chemical species that have comparable chemical features and systematically increasing molecular diameters. Results show that chemically active species with diameters greater than 0.5 nm are ineffective as stress corrosion agents. A comparison of crack growth results and zeolite diffusion measurements was used to conclude that the opening to the crack tip is less than or equal to 0.5 nm. This crack tip dimension is consistent with the concept of atomic scale brittle fracture in silica glass.  相似文献   

12.
Many researchers have studied the effects of changing the surface on fouling and cleaning. In biofouling the ‘Baier curve’ is a well-known result which relates adhesion to surface energy, and papers on the effect of changing surface energy to food fouling can be found more than 40 years ago. Recently the use of modified surfaces, at least at a research level, has been widespread. Here two different ways of studying surface–deposit interactions have been compared. Atomic force microscopy (AFM) is a method for probing interactions at a molecular level, and can measure (for example) the interaction between substrate and surfaces at a nm-scale. At a μm–mm level, we have developed a micromanipulation tool that can measure the force required to remove the deposit; the measure incorporates both surface and bulk deformation effects. The two methods have been compared by studying a range of model soils: toothpaste, as an example of a soil that can be removed by fluid flow alone, and confectionery soils. Removal has been studied from glass, stainless steel and fluorinated surfaces as examples of the sort of surfaces that can be found in practice. AFM measurements were made by using functionalized tips in force mode. The two types of probe give similar results, although the rheology of the soil affects the measurement from the micromanipulation probe under some circumstances. The data suggests that either method could be used to test candidate surfaces.  相似文献   

13.
Energy release rate and fracture toughness of amorphous aluminum nanoparticles reinforced soda‐lime silica glass (SLSG) were measured by performing fracture simulations of a single‐notched specimen via molecular dynamics simulations. The simulation procedure was first applied to conventional oxide glasses and the accuracy was verified with comparing to experimental data. According to the fracture simulations on three models of SLSG/‐Al2O3 composite, it was found that the crack propagation in the composites is prevented through following remarkable phenomena; one is that a‐Al2O3 nanoparticles increase fracture surface area by disturbing crack propagation. The other is that the deformation of a‐Al2O3 nanoparticle dissipates energy through cracking. Moreover, one of the models shows us that the crack cannot propagate if the initial notch is generated inside a‐Al2O3 nanoparticle. Such strengthening is partly due to the fact that the strength of the interface between nanoparticle and SLSG matrix is comparable to that of SLSG matrix, implying that their interface does not reduce crack resistance of the oxide glass.  相似文献   

14.
Equibiaxial stress effects were observed in constant stressing rate tests of indented soda-lime glass in a water environment. To discuss whether the equibiaxial stress effects on fracture strenght in a water environment were caused by the blunting of crack tips by chemical reaction between the glass and moisture, the specimens with controlled surface flaws soaked in hot water to make the crack tip blunt were fractured under both uniaxial and equibiaxial tensile stresses under both vacuum and air environments. The biaxial strengthening observed under restricted subcritical crack growth indicates that equibiaxial stress effects in a water environment are caused by the rounding of the initial crack tip.  相似文献   

15.
The adhesive interaction energy between a single 27 μm polystyrene sphere and a flat silica surface has been measured, as a function of applied load on the sphere, using an atomic force microscope (AFM). The pull-off force required to remove the sphere from the surface after application of a given load was found to increase as a function of the applied load. These data are indicative of a plastic or elasto-plastic deformation of the sphere. Simple analyses of these data using established elastic/plastic deformation theories indicate that, at the loads used, the system is most probably undergoing an elasto-plastic deformation. Further evidence for some plastic deformation of the sphere was obtained using scanning electron micrographs of the same sphere after an AFM experiment had been completed. Careful analysis of all these data indicated a significant time dependence of these adhesive interactions due to the viscoelastic nature of the polymer bead in question.  相似文献   

16.
针对我国玻璃工业的发展现状进行了分析和研究,指出了我国玻璃工业的发展方向。在玻璃工业发展的大背景下,硅砖也被提出了更高的要求,特别是玻璃窑全氧燃烧工艺的发展,要求第三代硅砖(特优硅砖)具有更高的纯度、高热态强度、抗蠕变、抗侵蚀性能等。  相似文献   

17.
During optical glass polishing, a number of interactions between the workpiece (i.e., glass), polishing slurry, and pad can influence the resulting workpiece roughness at different spatial scale lengths. In our previous studies, the particle size distribution of the slurry, the pad topography, and the amount of material removed by a single particle on the workpiece were shown to strongly correlate with roughness at AFM scale lengths (nm‐μm) and weakly at μ‐roughness scale lengths (μm‐mm). In this study, the polishing slurry pH and the generation of glass removal products are shown to influence the slurry particle spatial and height distribution at the polishing interface and the resulting μ‐roughness of the glass workpiece. A series of fused silica and phosphate glass samples were polished with various ceria and colloidal silica slurries over a range of slurry pH, and the resulting AFM roughness and μ‐roughness were measured. The AFM roughness was largely invariant with pH, suggesting that the removal function of a single particle is unchanged with pH. However, the μ‐roughness changed significantly, increasing linearly with pH for phosphate glass and having a maximum at an intermediate pH for fused silica. In addition, the spatial and height distribution of slurry particles on the pad (as measured by laser confocal microscopy) was determined to be distinctly different at low and high pH during phosphate glass polishing. Also, the zeta potential as a function of pH was measured for the workpiece, slurry, and pad with and without surrogate glass products (K3PO4 for phosphate glass and Si(OH)4 for silica) to assess the role of interfacial charge during polishing. The addition of K3PO4 significantly raised the zeta potential, whereas addition of Si(OH)4 had little effect on the zeta potential. An electrostatic DLVO three‐body force model, using the measured zeta potentials, was used to calculate the particle–particle, particle–workpiece, and particle–pad attractive and repulsive forces as a function of pH and the incorporation of glass products at the interface. The model predicted an increase in particle–pad attraction with an increase in pH and phosphate glass products consistent with the measured slurry distribution on the pads during phosphate glass polishing. Finally, a slurry “island” distribution gap (IDG) model has been formulated which utilizes the measured interface slurry distributions and a load balance to determine the interface gap, the contact area fraction, and the load on each slurry “island”. The IDG model was then used to simulate the workpiece surface topography and μ‐roughness; the results show an increase in roughness with pH similar to that observed experimentally.  相似文献   

18.
Hertzian and Vickers indentation tests have been performed to estimate the hardness and the fracture toughness of a soda-lime silica glass fabricated by the float process. A comparison between as-prepared glass, annealed glass (90 min at 680°C), and tempered glass (quenched from 660°C to 25°C) has been conducted to investigate the influence of thermal treatments on fracture toughness. In this study, a new method based on acoustic emission, recorded during Hertzian indentation tests, has been used in order to determine precisely the minimum load for fracture of these glasses having various thermal histories. Experimental results have shown the existence of a threshold load below which no crack can be propagated in glass. These critical loads have been used to determine Weibull’s fracture laws as a function of surface quality and maximum shear stresses. It has been also shown that the presence of residual stresses induced by quenching leads to a shift of this threshold load and modifies Weibull’s laws. Therefore, this method, which requires no measurement of any crack length, can be used to accurately estimate residual stresses induced by quenching in soda-lime silicate glasses.  相似文献   

19.
The atomic force microscope (AFM) was used to explore the nature of features formed on the surfaces of cracks in soda–lime–silicate glass that were held at stress intensity factors below the crack growth threshold. All studies were conducted in water. Cracks were first propagated at a stress intensity factor above the crack growth threshold and then arrested for 16 h at a stress intensity factor below the threshold. The stress intensity factor was then raised to reinitiate crack growth. The cycle was repeated multiple times, varying the hold stress intensity factor, the hold time, and the propagation stress intensity factor. Examination of the fracture surface by optical microscopy showed surface features that marked the points of crack arrest during the hold time. These features were identical to those reported earlier by Michalske in a similar study of crack arrest. A study with the AFM showed these features to be a consequence of a bifurcation of the crack surface. During the hold period, waviness developed along the crack front so that parts of the front propagated out of the original fracture plane, while other parts propagated into the plane. Crack growth changed from the original flat plane to a bifurcated surface with directions of as much as 3° to 5° to the original plane. This modification of crack growth behavior cannot be explained by a variation in the far-field stresses applied to the crack. Nor can the crack growth features be explained by chemical fluctuations within the glass. We speculate that changes in crack growth direction are a consequence of an enhancement in the corrosion rate on the flank of the crack at stresses below the apparent crack growth threshold in a manner described recently by Chuang and Fuller.  相似文献   

20.
Herein, the fracture toughness of ternary epoxy systems containing nanosilica and hollow glass microspheres (HGMS) is investigated. The experimental measurements reveal synergistic fracture toughness in some hybrid compositions: The incorporation of 10 phr of HGMS and nanosilica alone modify the fracture toughness of epoxy by 39% and 91%, respectively. However, use of 10 phr hybrid modifier can enhance the fracture toughness of the resin up to 120%. Observations reveal different toughening mechanisms for the blends i.e., plastic deformation for silica nanoparticles and crack bifurcation for HGMS. Both of these toughening mechanisms additively contribute to the synergism in ternary epoxies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号