首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fatigue strength optimization of cast aluminium alloys requires an understanding of the role of micropores resulting from the casting process. High cycle fatigue tests conducted on cast A356‐T6 show that the pore size and proximity to the specimen surface significantly influence fatigue crack initiation. This is supported by finite element analyses (both elastic and elastic–plastic) which demonstrate that high stress/strain concentration is induced by pores which are both large and near to the specimen surface. A new pore‐sensitive model based on a modified stress‐life approach has been developed which correlates fatigue life with the size of the failure‐dominant pore. The model prediction is in good agreement with experimental data.  相似文献   

2.
The automotive industry always strives to achieve light weight components to reduce fuel consumption and to meet environmental requirements. One way to obtain weight reduction is to replace steel components with components made of aluminium or other light weight materials. Aluminium has good corrosion properties and a high strength to weight ratio which makes it favourable in many applications. The increased use of aluminium castings in the automotive industry does also imply that the need for design data for aluminium increases. Especially for castings, the influence of casting defects are always an issue. For this reason fatigue properties for as-cast sand and permanent mould specimens with different contents of porosity have been studied.

Sand cast and permanent mould cast aluminium specimens of two different geometries were fatigue tested in cyclic bending at R = −1. Prior to fatigue test specimens were examined by X-ray and sorted into three quality groups depending on the porosity level. The aim of this work was to investigate the fatigue life for sand cast and permanent mould cast AlSi10Mg with different amounts of porosity. An additional aim was to predict the largest defect contained in a specified volume of a component, by using a statistical analysis of extreme values, and relate it to the fatigue life.

The results showed that fatigue strength for a smooth specimen geometry decreases by up to 15% with increased porosity. For specimens with a notched geometry, no influence of porosity on the fatigue strength was found. This is believed to be due to a much smaller volume subject to high stress than for specimens with low stress concentration.  相似文献   


3.
Evaluation of the thermo‐mechanical behaviour and prediction of the service life of cast aluminium alloys are important for the design of automobile engine cylinder heads. In this study, cast Al alloy specimens are extracted from cylinder heads and subjected to in‐phase thermo‐mechanical cyclic loading. The hysteresis curves related to stress and strain were recorded under the individual thermo‐mechanical loading conditions. The number cycles to failure corresponding to multiple mechanical strain and temperature ranges were obtained. It is found that the cyclic stress amplitude decreases and the cyclic softening rate increases with increasing maximum temperature rise. A modified fatigue‐creep model based on energy conservation has been developed for prediction of the fatigue life of cylinder heads. The proposed method shows good agreement with the well‐established Ostergren model and low standard deviations. In summary, the proposed method described in this study provides an option for prediction of the thermo‐mechanical behaviour of metals.  相似文献   

4.
The influence of mechanical strength for aluminium castings is often correlated in the literature to the occurrence of cast defects like porosity. However, because aluminium castings in the automotive industry are often used without surface treatment such as painting etc., the influence of corrosion and its effect on fatigue properties are required. Basically a surrounding environment can affect fatigue strength either by enhancing initiation or by increasing fatigue crack propagation properties. In this study, the influence of pre-exposure prior to fatigue testing has been evaluated. This implies that environmental enhancement of fatigue initiation due to corrosion has been studied. Two different environments [seawater acidified test (SWAAT) and Volvo Indoor Corrosion Test (VICT)] often employed for assessment of corrosive properties in the automotive industry have been used for pre-exposure of specimens. Based on experimental results, it is shown that fatigue strength is reduced by approximately 50% for specimens pre-exposed to SWAAT environment, while insignificant influence was found for specimens pre-exposed to VICT environment. The degradation of fatigue strength was found to be due to localized corrosive attacks. Propagation of these corrosive attacks takes place preferably in the eutectic phase and especially at the borderline between primary aluminium dendrites and the eutectic phase.  相似文献   

5.
In this paper, the feedback signal of ultrasonic fatigue system was used to deduce the accumulated fatigue damage in situ using the ultrasonic nonlinearity parameter. It was observed that, compared with the decrease in resonant frequency, the ultrasonic nonlinearity parameter shows a greater sensitivity to fatigue damage evolution (i.e. crack initiation and propagation). Ultrasonic nonlinearity parameters obtained from tests conducted under various environmental humidity levels were monitored and analysed. Through changes in the ultrasonic nonlinearity parameter, it was concluded that both of the fatigue crack initiation life and crack propagation life were reduced by increasing the humidity levels.  相似文献   

6.
The effect of the cooling rate during solidification on the fatigue life of a cast aluminium alloy (A356.2-T6) is examined. The fatigue lives were determined for specimens removed from ingots with a gradient in cooling rates along their heights. Low- and high-cycle fatigue tests were conducted under both axial loading and reciprocating-bending conditions at a stress (strain) ratio ( R ) of −1.0, 0.1 and 0.2. Results show that the fatigue life decreases by a factor of three in low-cycle fatigue ( R = −1.0) and by a factor of 100 in high-cycle fatigue ( R = 0.1) as solidification cooling rate decreases from ~10 to ~0.3 K s−1 , as indicated by measurements of the secondary dendrite arm spacings in the ingots. Fatigue cracks initiated from porosity in the material solidified at slower cooling rates. When pore size is below a critical size of ~80 μm, as a result of increasing the cooling rate, the fatigue cracks initiated from near-surface eutectic-microconstituent. When present at or near the surface, large oxide inclusions initiated fatigue cracks.  相似文献   

7.
Fatigue properties of some steels are presented with the aim of highlighting both the need, and areas, for future work on these materials. Possible explanations for the lack of acceptance, by design engineers, of cast steels are given. Specific areas in which further research is required are indicated - the biggest problem is predicted as being the characterization and mathematical modelling of real defects. Discontinuities worthy of investigation are listed.  相似文献   

8.
In the last decades, the combination of high mechanical performances and low production costs increased the industrial interest on ductile cast irons. These grades are often used for applications where the fatigue resistance can be a critical issue (eg, machine frames for the wind‐power industry or crankshaft used in trucks) and the investigation of the main damaging mechanisms during both the crack initiation and the crack propagation stage could offer new perspectives about these alloys. Ductile cast irons can be considered as a natural composite, being characterized by graphite elements (nodules) embedded in a more or less ductile matrix (ranging from fully ferritic to pearlitic, from martensitic to austempered). In this work, the fatigue crack initiation mechanisms were investigated considering different matrix microstructure and the presence of a mechanical properties gradient in the graphite nodules.  相似文献   

9.
Surface modification processes are increasingly used to fully exploit material potential in fatigue critical applications because fatigue strength is sensitive to surface conditions. Nitriding is extensively adopted with ferrous materials because it forms a hard and strong surface layer and a system of superficial compressive residual stresses. Fatigue, however, is strongly dependent also on defects and inhomogeneity. When nitriding is applied to nodular cast iron, the relatively thin hardened layer (about 300 μm) contains graphite nodules (diameter of the order of 30 μm), casting defects and a heterogeneous matrix structure. The paper presents and discusses the influence of nitriding on the fatigue response and fracture mechanisms of nodular cast iron. A ferritic nodular cast iron and a synthetic melt with different content of effective ferrite were initially gas-nitrided. Then, (i) structural analysis of nitrided layers, (ii) fatigue testing with rotating bending specimens, and (iii) fatigue fracture surface inspection were performed. Performance and scatter in fatigue performance is discussed by selective inspection of fracture surfaces and identification fracture micromechanisms. A semiempirical model explains observed trends in test results and is used for the process optimization. __________ Translated from Problemy Prochnosti, No. 1, pp. 85–88, January–February, 2008.  相似文献   

10.
Quantitatively evaluating the fatigue strength of ductile iron (DI) with casting surfaces involves several complicated factors such as surface roughness, transition of microstructures from surface to interior, several types of defects and residual stresses. Tension–compression fatigue tests have been performed using DI having casting surfaces composed of a ferritic structure, a ferrite‐pearlitic structure and a pearlitic structure. Residual stresses were relieved by annealing in order to separately evaluate each factor. The parameter model was applied for quantitative evaluation of fatigue strength. Surface roughness was considered to be mechanically equivalent to a defect, and the effective defect size due to the interaction between the surface roughness and a defect was defined. The present study proposes a method of evaluating the maximum defect size using statistics of extremes and the lower bound of the scatter of fatigue strength, for practical design.  相似文献   

11.
The strength and fatigue properties of cast iron samples taken from water distribution mains have been investigated. Specimens were sourced from three sections of pipe which had experienced varying amounts of corrosion in service, enabling the variable of pipe condition to be incorporated within the study.
The strengths in four-point flexure of small specimens from the pipes examined were described using Weibull statistics; different characteristic strengths and Weibull moduli were obtained, according to the pipe condition. A further set of samples from each pipe were subjected to flexural fatigue at a range of stress levels (different stress levels were chosen for each pipe based on the short-term strength properties) and residual strength tests were carried out on the surviving samples from one stress level for each pipe. There is evidence of a fatigue effect for all sample sets. There were slight differences in the residual strength behaviour – the residual strength of the survivors was reduced in the samples from the section in best condition while the residual strength of the survivors from the other two pipe sections was relatively unaffected. These trends are discussed with reference to condition and fatigue stress level.
The results suggest that mechanical fatigue may be a factor in the failure of water distribution pipes. The results may have implications for large diameter trunk mains as well as the small diameter water distribution pipes tested here. To assess the effect in more detail, consideration needs to be given to scaling effects in fatigue and the likely levels of any fatigue stress seen in service.  相似文献   

12.
The short fatigue crack growth behaviour in a model cast aluminium piston alloy has been investigated. This has been achieved using a combination of fatigue crack replication methods at various intervals during fatigue testing and post‐mortem analysis of crack profiles. Crack–microstructure interactions have been clearly delineated using a combination of optical microscopy, scanning electron microscopy and electron backscatter diffraction. Results show that intermetallic particles play a significant role in determining the crack path and growth rate of short fatigue cracks. It is observed that the growth of short cracks is often retarded or even arrested at intermetallic particles and grain boundaries. Crack deflection at intermetallics and grain boundaries is also frequently observed. These results have been compared with the long crack growth behaviour of the alloy.  相似文献   

13.
The low‐cycle fatigue behaviour of a cast Al–12Si–CuNiMg alloy, with a high content of Si, is investigated at 200, 350 and 400 °C. The fatigue test results show that the alloy exhibits symmetrical hysteresis loops, moderate cyclic softening and higher fatigue resistance at higher temperature. The fracture surface analysis reveals that more tear ridges are formed at higher temperature, which strongly affect the fatigue resistance. Furthermore, evaluation of the material fatigue resistance using an energy‐based Halford–Marrow model indicates that the material's ability to absorb and dissipate plastic strain energy is enhanced as temperature increases.  相似文献   

14.
The proper characterization of cast materials is rather challenging because of wide deviations of material features due to the fabrication process. In the frame of propeller design, a recently proposed fatigue assessment procedure highlighted the need of reliable fatigue strength characterization of cast bronzes. With the aim of obtaining reference S–N curves to support the fatigue assessment of propeller blades and to evaluate the effect on fatigue strength of the most influencing parameters, a comprehensive literature survey was carried out. It appeared that fatigue strength of cast bronzes is quite challenging to evaluate, firstly, because the properties may considerably differ from small specimens to real blades and, secondly, because relatively few experimental data are openly available.  相似文献   

15.
In recent years, with higher demand for improved quality and corrosion resistance, recovered substrates have been extensively used. Consequently residual stresses originated from these coatings reduce the fatigue strength of a component. Due to this negative influence occasioned by corrosion resistance protective coatings, an effective process like shot peening must be considered to improve the fatigue strength. The shot peening treatment pushes the crack sources beneath the surface in most of medium and high cycle cases due to the compressive residual stress field (CRSF) induced. The aim of this study was to evaluate the influence on the fatigue life of anodic films grown on 7050-T7451 aluminium alloy by sulphuric acid anodizing, chromic acid anodizing and hard anodizing. The influence on the rotating and reverse bending fatigue strength of anodic films grown on the aluminium alloy is to degrade the stress life fatigue performance of the base material. A consistent gain in fatigue life in relation to the base material was obtained through the shot peening process in coated specimens, associated to a residual stress field compressive near the surface, useful to avoid fatigue crack nucleation and delay or even stop crack propagation.  相似文献   

16.
The fatigue crack growth characteristics of high-strength aluminium alloys are discussed in terms of behaviour during mechanical testing and fracture surface appearance. For a wide range of crack growth rates, the crack extends both by the formation of ductile striations and by the coalescence of micro-voids. Dimples are observed at stress intensities very much less than the plane strain fracture toughness, and this is explained in terms of the probability of inclusions lying close to the crack tip. The striation formation process is described as a combination of environmentally-enhanced cleavage processes and plastic blunting of the crack tip.  相似文献   

17.
The present study aims at explaining the synergistic effect of environmental media and stress/strain on fatigue lives of aluminium alloys. Rotating bending fatigue tests were carried out using four different aluminium alloys LY12‐CZ, 2024‐T4, 7475‐T7351 and 7075‐T651, at air state, 3.5% and 5.0% NaCl aqueous solutions. These results indicated that synergistic actions of the environmental media and cyclic loading accelerated the fatigue crack propagation of aluminium alloys. Furthermore, various influence factors (such as solution concentration, cyclic numbers, high (low) strength aluminium alloys etc.) of the fatigue life at synergistic actions of the environmental media and stress were quantificationally discussed in this paper.  相似文献   

18.
For ageing airframe structures, a critical challenge for next generation linear elastic fracture mechanics (LEFM) modelling is to predict the effect of corrosion damage on the remaining fatigue life and structural integrity of components. This effort aims to extend a previously developed LEFM modelling approach to field corroded specimens and variable amplitude loading. Iterations of LEFM modelling were performed with different initial flaw sizes and crack growth rate laws and compared to detailed experimental measurements of crack formation and small crack growth. Conservative LEFM‐based lifetime predictions of corroded components were achieved using a corrosion modified‐equivalent initial flaw size along with crack growth rates from a constant Kmax‐decreasing ΔK protocol. The source of the error in each of the LEFM iterations is critiqued to identify the bounds for engineering application.  相似文献   

19.
Aluminum specimens with drilled holes were spectrum loaded to observe initiation and growth of very short cracks from 0.1 mm deep. A multitude of crack initiation sites located along the bore of the hole was found to be more typical than a single origin. The simultaneous growth of several microcracks was followed by coalescence into one semi-elliptical crack with a single propagation front, which tended to grow into a semi-circular shape. A three-step model of fatigue crack formation at holes is proposed and it is concluded that a crack detected at a hole has a high probability of taking longer to grow to failure than predicted by fracture mechanics analysis.  相似文献   

20.
In this paper, the importance of crack front length as a factor controlling growth rate is emphasized. It is shown that fatigue cracks in aluminium alloys do not advance in a coherent manner, but the front is divided into sectors, each of which relates to an individual cracking element. These elements act with some degree of mechanical isolation from their neighbours, and such an arrangement leads to crack front fragmentation and to an increase in the real crack front length.Even on this microscopic scale the crack segments extend as though in a continuum, and, certainly at low stress intensity factors, crack paths are dictated by the local stress direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号