首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
为了同步考虑用户的任务QoS需求和云资源提供方的收益,提出一种云环境中满足帕累托最优的多目标最优化DAG(Directed Acyclic Graph)粒子群算法MODPSO(Multi-objective DAG Particle Swarm Optimization)。综合考虑任务执行跨度、执行代价与执行能耗的三目标同步最优化,设计基于DVFS的离散PSO调度优化方法。重新定义PSO的种群粒子进化过程和更新规则,进而得到多目标优化工作流调度解。通过人工合成工作流和现实科学工作流进行仿真测试,并对算法性能进行分析。结果表明,该算法可以通过非支配集的方式实现冲突多目标的调度优化求解。在满足用户QoS的同时,得到最优解的Pareto边界集,实现调度性能与系统能耗的均衡。  相似文献   

2.
针对基于梯度策略的多目标优化算法无法适用于多目标、高维度的生成对抗网络(Generative Adversarial Nets,GANs)及多目标GANs中利用交叉验证产生次优解,极难求得最优解等问题,提出一种基于梯度策略的多目标GANs帕累托最优解算法.该算法采用硬参数共享方式,将多目标优化分解为多个两目标优化,确定...  相似文献   

3.
姜栋  徐欣 《计算机应用》2017,37(12):3620-3624
针对多机器人系统动态任务分配中存在的优化问题,在使用合同网初始任务分配的基础上提出了一种使用帕累托改进的任务二次分配算法。多机器人系统并行执行救火任务时,首先通过初始化任务分配将多机器人划分为若干子群;然后,每个子群承包某一救火任务,子群在执行任务的同时与就近子群进行帕累托改进确定需要迁移的机器人,实现两子群之间帕累托最优;最后,使用后序二叉树遍历对所有子群进行帕累托改进实现全局帕累托最优。理论分析和仿真结果表明,相较于强化学习算法和蚁群算法,所提算法的救火任务时间分别减少26.18%和37.04%;相较于传统合同网方法,所提算法在时间方面能够高效完成救火任务,在系统收益方面也具有明显优势。  相似文献   

4.
在多目标进化算法中,时间复杂度过高是普遍的问题,特别是三个目标函数以上时,解的等级分配占用了过多运算时间。针对三目标问题,利用帕累托支配关系,对解的等级分配进行研究,发现经典的等级排序及分配方法存在一定冗余操作,需对全部的解先排序后,才能再分配等级并选择下一代,造成部分不必要的运算。为减少该冗余,利用帕累托非支配关系结合差分进化,实现高效三目标进化算法。算法每次迭代对种群中最高等级的个体进行计算,在分配等级同时进行选择后代个体操作,当后代种群生成时便跳出计算,从而减少个体的计算数量,降低运算量,同时给出该方法的相关理论分析和证明过程。然后,针对一系列三目标优化问题,将提出方法与著名排序方法NSGAII,及近年来优秀的ENS方法进行对比实验。仿真实验结果表明,提出方法在时间复杂度和收敛速度上优于经典方法,稍差于ENS方法。在标准测试函数DTLZ1-DTLZ6的性能上,提出方法近似于ENS方法,优于NSGAII算法,从而验证了提出方法的有效性和正确性。  相似文献   

5.
多目标蚁群优化是一类重要的多目标进化算法,它在解决多目标优化问题,尤其是多目标组合优化方面,具有优异的性能。首先,通过总结多目标蚁群优化的研究成果,将多目标蚁群优化分为基于帕累托的方法、基于指标函数的方法和目标分解法3类,并阐述了每类方法的特点和代表性算法;然后,展现了多目标蚁群优化在实际问题中的广泛应用;最后,探讨了目前多目标蚁群优化存在的问题。  相似文献   

6.
基于分解的超多目标进化算法是求解各类超多目标优化问题的主流方法, 其性能在很大程度上依赖于所采用参考向量与真实帕累托前沿面(Pareto front, PF)的匹配程度. 现有基于分解的超多目标进化算法尚难以同时有效处理各类PF不同的优化问题. 为此, 提出了一种基于PF曲率预估的超多目标进化算法(MaOEA-CE). 所提算法的核心包括两个方面, 首先基于对PF曲率的预估, 在每次迭代过程中生成不同的参考向量, 以渐进匹配不同类型问题的真实PF; 其次在环境选择过程中, 再基于预估的曲率选择合适的聚合函数对精英解进行挑选, 并对参考向量进行动态调整, 在维护种群多样性的同时提升种群的收敛性. 为验证MaOEA-CE的有效性, 将其与7个先进的超多目标算法在3个主流测试问题集DTLZ、WFG和MaF上进行对比, 实验结果表明MaOEA-CE具有明显的竞争力.  相似文献   

7.
多目标多因子优化(MO-MFO)问题作为一类新的优化问题近年来受到了众多关注,其特点是需要利用单个种群来同时优化多个多目标优化任务.针对该问题,提出一个基于分解策略的多目标多因子进化算法(MFEA/D).算法通过多组权重向量,将MO-MFO问题中的每个任务分解成一系列单目标优化子问题,并用单个种群同时优化.在种群进化过...  相似文献   

8.
为了提高多目标优化算法解集的分布性和收敛性,提出一种基于分解和差分进化的多目标粒子群优化算法(dMOPSO-DE).该算法通过提出方向角产生一组均匀的方向向量,确保粒子分布的均匀性;引入隐式精英保持策略和差分进化修正机制选择全局最优粒子,避免种群陷入局部最优Pareto前沿;采用粒子重置策略保证群体的多样性.与非支配排序(NSGA-II)算法、多目标粒子群优化(MOPSO)算法、分解多目标粒子群优化(dMOPSO)算法和分解多目标进化-差分进化(MOEA/D-DE)算法进行比较,实验结果表明,所提出算法在求解多目标优化问题时具有良好的收敛性和多样性.  相似文献   

9.
针对在云环境中,服务资源在各用户间难以实现最优动态分配的问题,利用帕累托最优理论与粒子群优化算法相互结合应用于云计算模型中,对各种服务资源的效用进行最优化配置,最终使资源利用率达到一个最优的状态。通过CloudSim对云服务资源调度进行仿真实验,结果表明,采用帕累托最优算法优化后的云计算模型具有更好的系统性能,使得资源的调度和配置达到最优。  相似文献   

10.
量子多目标进化算法研究   总被引:1,自引:2,他引:1  
本文首次将量子计算的理论用于多目标优化,提出量子多目标进化算法(QMOEA),其采用量子位染色体表示法,利用量子门旋转策略和量子变异实现群体的进化,使用ε支配关系构造外部种群以此保持算法的较好分布性,提出基于快速排序的非劣最优解构造方法加快算法运行效率,实验表明,这种方法与经典的多目标进化算法SPEA2相比,其收敛性更好且分布更均匀  相似文献   

11.
为了改进多目标进化算法的收敛性和解集的多样性,提出一种基于Pareto排序的混合多目标进化算法PHMOEA。在PHMOEA中使用干扰集刺激优化非支配集的构成,改善算法的收敛性和解集的分布性,并根据Pareto等级和精英保留策略改进了交叉算子和变异算子。该算法与著名的NSGA-II和SPEA2多目标进化算法在13个基准测试函数上的对比结果表明,PHMOEA算法不仅多样性较好,而且提高了算法的收敛性,并使获得的最优解集的分布性更均匀,覆盖范围更广。  相似文献   

12.
提出一种新的基于ε-支配关系的自适应多目标进化算法(AEMOEA)。在每次的进化中保留端点,并从端点集中选取一个作为父本,参加进化,弥补了ε-MOEA算法中端点易被丢掉的缺陷;在进化过程中根据存档动态地调整ε的取值,使解的分布更加均匀;当存档中个体过多时,运用ε-支配关系进行剪切,使其个体数处在合理水平。通过5个常用双目标测试函数的计算,验证了该算法在求解质量上优于ε-MOEA、NAGA-II以及SPEA-2等主流多目标算法。  相似文献   

13.
用多目标演化优化算法解决约束选址问题   总被引:6,自引:0,他引:6  
约束选址问题是一个多目标约束优化问题,传统算法(加权法)一次只能得到一个候选解,用多目标演化优化算法对其进行求解,可以一次得到多个候选解,给决策者提供更多的选择余地,以期获得更大的利益,数字试验表明,该方法优于传统多目标优化方法。  相似文献   

14.
Pareto强度值演化算法求解约束优化问题   总被引:34,自引:0,他引:34       下载免费PDF全文
周育人  李元香  王勇  康立山 《软件学报》2003,14(7):1243-1249
提出了一种求解约束函数优化问题的方法.它不使用传统的惩罚函数,也不区分可行解和不可行解.新的演化算法将约束优化问题转换成两个目标优化问题,其中一个为原问题的目标函数,另一个为违反约束条件的程度函数.利用多目标优化问题中的Pareto优于关系,定义个体Pareto强度值指标以便对个体进行排序选优,根据Pareto强度值排序和最小代数代沟模型设计出新的实数编码遗传算法.对常见测试函数的数值实验证实了新方法的有效性、通用性和稳健性,其性能优于现有的一些演化算法.特别是对于一些既有等式约束又有不等式约束的复杂非线性规划问题,该算法获得了更高精度的解.  相似文献   

15.
一种用于多目标优化的混合粒子群优化算法   总被引:1,自引:0,他引:1       下载免费PDF全文
将粒子群算法与局部优化方法相结合,提出了一种混合粒子群多目标优化算法(HMOPSO)。该算法针对粒子群局部优化性能较差的缺点,引入多目标线搜索与粒子群算法相结合的策略,以增强粒子群算法的局部搜索能力。HMOPSO首先运行PSO算法,得到近似的Pareto最优解;然后启动多目标线搜索,发挥传统数值优化算法的优势,对其进行进一步的优化。数值实验表明,HMOPSO具有良好的全局优化性能和较强的局部搜索能力,同时HMOPSO所得的非劣解集在分散性、错误率和逼近程度等量化指标上优于MOPSO。  相似文献   

16.
通过在目标空间中利用目标本身信息估算个体k最近邻距离之和,作为个体的密度信息,根据个体的密度信息对群体中过剩的非劣解进行逐个去除,以便更好地维护解的多样性,由此给出了一种基于个体密度估算的多目标优化演化算法IDEMOEA。用这个算法对几个典型的多目标优化函数进行测试。测试结果表明,算法IDEMOEA求解多目标优化问题是行之有效的。  相似文献   

17.
The basic idea in the estimation of distribution algorithms is the replacement of heuristic operators with machine learning models such as regression models, clustering models, or classification models. So, recently, the model-based evolutionary algorithms (MBEAs) have been suggested in three groups: The estimation of distribution algorithms (EDAs), surrogate assisted evolutionary algorithms, and the inversed models to map from the objective space to the decision space. In this article, a new approach, based on an inversed model of Gaussian process and random forest framework, is proposed. The main idea is applying the process of random forest variable importance with a random grouping that determines some of the best assignment of decision variables to objective functions in order to form a Gaussian process in inverse models that maps to decision space the rich solutions which are discovered from objective space. Then these inverse models through sampling the objective space generate offspring. The proposed algorithm has been tested on the benchmark test suite for evolutionary algorithms (modified Deb K, Thiele L, Laumanns M, Zitzler E (DTLZ), and Walking Fish Group (WFG)) and indicates that the proposed method is a competitive and promising approach.  相似文献   

18.
为了提高协同进化多目标进化算法的全局收敛性,提出了一种调用协同进化算子的自适应方法。其基本思想是:根据目标函数的变化率自动调用协同进化算子;当种群进化正常时,调用合作算子和吞并算子;当种群进化接近停滞时,调用分裂算子。通过数值实验用量化指标研究了新算法的收敛性和分布性,结果表明,与常规协同进化多目标进化算法相比,新算法不仅具有良好的分布性,而且全局收敛性有了明显的提高。  相似文献   

19.
聚类数的确定在聚类分析中是一个基本却具有挑战性的问题.一方面,最佳聚类数根据不同的评价标准、用户偏好或需求可能不一致,因此将不同聚类数的聚类结果呈现给用户作参考是有意义的.另一方面,增加聚类数虽会使聚类结果更加紧致,却会削弱不同类之间的分离性,所以选择合适的聚类数是一个在最小化聚类数与最大化类内紧致性或类间分离性之间取...  相似文献   

20.
动态多目标约束优化问题是一类NP-Hard问题,定义了动态环境下进化种群中个体的序值和个体的约束度,结合这两个定义给出了一种选择算子.在一种环境变化判断算子下给出了求解环境变量取值于正整数集Z+的一类带约束动态多目标优化问题的进化算法.通过几个典型的Benchmark函数对算法的性能进行了测试,其结果表明新算法能够较好地求出带约束动态多目标优化问题在不同环境下质量较好、分布较均匀的Pareto最优解集.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号