首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
设计了一种低碳CuNiCrMnMo钢,并研究了3种热处理工艺(油淬+回火、水淬+回火和轧后直接淬火回火)条件下试验钢的组织与性能.试验钢经油淬和600 ℃回火1 h,屈服强度Rp0.2=645 MPa,抗拉强度Rm=745 MPa,-60 ℃冲击吸收能量为138 J;经水淬和650 ℃回火1 h,屈服强度Rp0.2= 668 MPa,抗拉强度Rm=721 MPa,-80 ℃下冲击吸收能量为216 J.经直接淬火和650 ℃回火1 h,达到最佳的强韧性匹配,即屈服强度Rp0.2=700 MPa,抗拉强度Rm=764 MPa,-80 ℃下冲击吸收能量为182 J.  相似文献   

2.
利用单因素和正交试验对42CrMoVNb钢的热处理工艺进行了优化,利用洛氏硬度计、万能拉伸试验机和金属摆锤冲击试验机检测了相关的力学性能,研究了热处理工艺对42CrMoVNb钢组织和力学性能的影响。结果表明,42CrMoVNb钢的最优淬火回火工艺为860℃×20 min,油冷+440℃×150 min,空冷;经最优工艺处理后其组织为回火屈氏体基体上弥散分布着细小的碳化物颗粒,硬度、抗拉强度、屈服强度、屈强比、断后伸长率、断面收缩率和-20℃低温冲击吸收能量分别为44.5 HRC、1467 MPa、1357 MPa、0.93、10.5%、46%和27.1 J;力学性能满足14.9级高强度螺栓的技术指标要求。  相似文献   

3.
袁睿  潘中德  武会宾 《金属热处理》2021,46(10):112-116
利用扫描电镜、激光共聚焦显微镜、室温拉伸、低温冲击测试等试验方法,采用了正火、强化正火、正火+400 ℃回火的热处理工艺,研究了不同正火工艺对420 MPa级海洋风电用钢板组织和性能的影响。结果表明:通过正火处理后,正火态试验钢的平均晶粒尺寸由轧态试验钢的8 μm细化至6 μm,带状组织得到改善,强度与低温冲击性能均得到提升,屈服强度提升至442 MPa,-50 ℃下的冲击吸收能达到120 J;通过正火+400 ℃回火处理后,平均晶粒尺寸为7 μm,虽然大幅度提升了钢的低温冲击性能,-50 ℃下的冲击吸收能量达到194 J,但是钢的屈服强度降低为422 MPa。强化正火后组织为铁素体+珠光体+少量贝氏体,平均晶粒尺寸为5.6 μm,屈服强度提升至460 MPa,断后伸长率和低温冲击吸收能量相较于正火后试验钢有所降低但仍能满足EN10025性能标准,达到强韧性的最佳匹配,是生产420 MPa级海上风电用钢的最佳热处理工艺。  相似文献   

4.
研究了模拟焊后热处理工艺参数对Q370R钢板组织和力学性能的影响。结果表明,试验参数下的正火态Q370R钢板和模拟焊后热处理后得到的Q370R钢板组织均为铁素体+珠光体组织。模拟焊后热处理580℃×16 h(单次)和580℃×8 h(两次)钢板较正火态钢板晶粒度分别降低了1级和1.5级,带状物评级均降低1级;随着焊后热处理次数的增加和温度的升高,析出物发生粗化长大的趋势。随着模拟焊后热处理次数增多、模拟焊后热处理时间的延长,钢板强度降低,冲击吸收能量降低。580℃×16 h(单次)模拟焊后热处理钢板较正火态钢板抗拉强度、屈服强度和冲击吸收能量降低分别约50 MPa、30 MPa和40 J。580℃×8 h(两次)模拟焊后热处理钢板较正火态钢板抗拉强度、屈服强度和冲击吸收能量降低分别约50 MPa、45 MPa和45 J。580℃×16 h(单次)模拟焊后热处理钢板和580℃×8 h(两次)模拟焊后热处理钢板冲击吸收能量有离散现象,分析原因是成分偏析所致。  相似文献   

5.
研究了固溶处理对10Ni3MnCuAl塑料模具钢的显微组织和力学性能的影响。结果表明:试验钢采用在880℃×12h固溶,油冷+530℃×40h时效的热处理制度下,试验钢可以获得较好的综合力学性能,尤其是冲击吸收能量达到了16.8J,具有优异的韧性。在此热处理工艺下,试验钢得到的组织主要是板条状马氏体、粒状贝氏体和少量的残留奥氏体。采用冷却速度较慢的炉冷将会促进相界碳化物的析出,促进M/A岛的分解,进而显著恶化钢的冲击性能。  相似文献   

6.
陈炜  陆达  王冬颖 《热处理》2024,(1):37-39
Z12CN钢为铸造马氏体不锈钢,常用于制作水泵零件。为确定Z12CN钢的最佳热处理工艺,制作了?30 mm×300 mm的Z12CN钢试块,并对其进行了1 020℃保温1.5 h空冷正火和660℃、720℃和760℃回火3 h空冷及760℃回火5 h和7 h空冷。经上述工艺热处理后检测了试块的硬度、强度和冲击韧度以及经最佳工艺热处理后的显微组织。结果表明:随着回火温度的提高,正火后的Z12CN钢强度和硬度降低,冲击韧度提高;回火温度相同,随着回火时间的延长,钢的强度和硬度降低,冲击韧度提高;Z12CN钢的最佳热处理工艺为1 020℃保温1.5 h空冷正火+760℃回火3~5 h空冷,经此工艺热处理的30 mm厚Z12CN试块力学性能满足设计要求,显微组织为正常的回火索氏体。  相似文献   

7.
选用不含Nb钢和含Nb(质量分数,0.021%)钢作为试验材料,采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、布氏硬度测试、冲击和拉伸等试验手段研究试验钢轧制后在不同温度加热淬火+回火及850℃在线淬火+不同温度回火两种热处理工艺下的组织和综合性能。结果表明:再加热淬火+回火工艺下,含Nb钢随淬火温度的提高,强度和韧性都有所提高,在950℃淬火+200℃回火处理下综合性能最佳,其强度为1843 MPa,硬度值为567 HBW,-20℃下的冲击吸收能量为31 J,符合NM500的标准;在线淬火+回火工艺下随着回火温度的提高,试验钢的综合性能降低,但含Nb钢的性能都高于相同条件下的不含Nb钢。含Nb钢在850℃在线淬火+200℃回火处理下综合性能最佳,其强度为1818 MPa,硬度值为562 HBW,-20℃下的冲击吸收能量为30 J,同样达到了NM500的标准。  相似文献   

8.
以自主设计的稀土改性Si-Mn-B系贝氏体-马氏体复相耐磨钢为研究对象,利用正交试验研究了不同淬火温度、淬火保温时间、回火温度、回火时间对材料强度、冲击功的影响,以确定最佳热处理工艺,并利用XRD、OM、SEM、TEM方法对其最佳热处理工艺组织进行分析。结果表明:淬火温度对抗拉强度影响最大,回火温度对屈服强度的影响最大,淬火保温时间对冲击功的影响最大。最优热处理方案为:900℃×1.5 h油淬+300℃×3 h回火处理。按此方案热处理后有较好的强韧配合:抗拉强度为1903 MPa,屈服强度为1591 MPa,洛氏硬度为51.4 HRC,无缺口冲击功为267 J。采用彩色金相-化学腐蚀法,组织为下贝氏体(49.6%)、板条马氏体(43.9%)和少量残留奥氏体(6.5%)。  相似文献   

9.
以自主设计的稀土改性Si-Mn-B系贝氏体-马氏体复相耐磨钢为研究对象,利用正交试验研究了不同淬火温度、淬火保温时间、回火温度、回火时间对材料强度、冲击功的影响,以确定最佳热处理工艺,并利用XRD、OM、SEM、TEM方法对其最佳热处理工艺组织进行分析。结果表明:淬火温度对抗拉强度影响最大,回火温度对屈服强度的影响最大,淬火保温时间对冲击功的影响最大。最优热处理方案为:900℃×1.5 h油淬+300℃×3 h回火处理。按此方案热处理后有较好的强韧配合:抗拉强度为1903 MPa,屈服强度为1591 MPa,洛氏硬度为51.4 HRC,无缺口冲击功为267 J。采用彩色金相-化学腐蚀法,组织为下贝氏体(49.6%)、板条马氏体(43.9%)和少量残留奥氏体(6.5%)。  相似文献   

10.
利用光学显微镜及SEM进行组织观察,通过拉伸和低温冲击试验研究了热处理对两种不同碳含量3.5Ni钢的力学性能和低温韧性的影响。两种3.5Ni钢热轧板分别经860 ℃×1 h空冷的正火处理和860 ℃×1 h水淬+(580, 610, 640)×1 h回火的调质处理。结果表明:含碳量较高的3.5Ni钢热轧态强度低塑性高,但-100 ℃冲击吸收能量低,经正火处理后试验钢的整体性能降低,而调质处理后强度和低温冲击吸收能量均明显提升,塑性略有降低;含碳量较低的3.5Ni钢热轧态已经具有优异的拉伸性能和低温冲击性能,经热处理后拉伸性能和低温韧性没有得到明显提升。  相似文献   

11.
研究了Si-Mn-Cr-Ni系低合金高强钢锻件在不同热处理工艺下的显微组织和力学性能。结果表明,试验钢经820℃正火后,锻件组织细化效果较好且分布均匀,再经920℃淬火和280℃低温回火后,其硬度为43.9 HRC,冲击吸收能量KV2为82.6 J,抗拉强度为1513.35 MPa,屈服强度为1221.92 MPa,伸长率为14.65%,此时组织为回火板条马氏体且晶粒尺寸细小,晶粒度为8.3级,达到最佳的强韧性匹配,试验钢的综合力学性能最优。  相似文献   

12.
对08Ni3D锻钢进行了9种热处理方案的工艺试验,采用Charpy冲击试验、低温拉伸、常温拉伸等方法,研究了该钢热处理后-100℃的低温冲击吸收能量、室温到-100 ℃的强度和伸长率等力学性能。通过金相显微镜(OM)、扫描电镜(SEM)对显微组织、断口形貌等进行分析。结果表明,该钢-100 ℃的低温力学性能优良,显微组织均匀细小、SEM微观断口形貌为韧性断口,确定了870 ℃水淬+630 ℃空冷的最佳热处理工艺,完全可以应用在-100 ℃的低温压缩机定子上。  相似文献   

13.
采用力学性能测试以及金相分析、TEM等微观结构分析,研究了传统热处理工艺(915℃×0.5h油冷+(-80)℃×1h+205℃×2h空冷)下成分波动对AMS 6308钢力学性能和微观组织的影响.结果表明,1号试验钢(wt%:0.1C,1.0Cr,1.97Ni,3.25Mo,2.0Cu,0.08V,0.83Si,余量Fe)的塑性和韧性最优,且强度和硬度也保持在较高的水平,其综合力学性能最佳(Rm=1135 MPa,Rp0.2 =880 MPa,A=16%,Z =63%,KV2=125 J,35 HRC).  相似文献   

14.
文成  田玉琬  王贵 《金属热处理》2015,40(4):129-134
以27SiMn钢贝氏体转变的冷速条件和温度范围为依据,采用正交方法进行了分段淬火的热处理试验。研究了淬火温度、淬火保温时间、回火温度、回火保温时间对于热处理后钢材力学性能的影响规律。结果表明,27SiMn钢获得贝氏体组织的最优热处理工艺为:910 ℃,30 min淬火(油冷至450 ℃后空冷至室温)+250 ℃,40 min回火,经该工艺热处理后27SiMn钢的屈服强度从423 MPa 提高到693 MPa,抗拉强度由689 MPa提高到890 MPa,伸长率和断面收缩率分别为28%和67%,冲击吸收能量由原来的的13 J提高到64 J,冲击韧性显著改善,满足了工程机械用钢的需求。  相似文献   

15.
通过力学性能测试和金相显微分析,研究了热处理工艺对X4CrNiCuMo14-5叶片钢力学性能的影响.结果表明,在990~1050℃固溶,固溶温度对力学性能影响较小;在850~950℃中间调整,温度的升高,力学性能变化较小;增加低温二次冷处理,塑性提高,强度上升,冲击韧度下降;X4CrNiCuMo14-5叶片钢建议热处理:1010℃×1h空冷+900℃×2h空冷+冰水冷却+600℃×2h空冷.  相似文献   

16.
对高铁车轴用34CrNiMo6钢的热处理工艺进行了试验研究。结果表明,34CrNiMo6钢试样经850℃油淬、680℃回火后,其抗拉强度为829.7 MPa,屈服强度为730.0 MPa,断后伸长率为23.3%,达到高铁车轴要求的力学性能指标,且常温冲击吸收能量为141.7 J,-20℃冲击吸收能量为128.3 J,-40℃冲击吸收能量为121.3 J。  相似文献   

17.
采用力学性能测试、金相显微分析等方法,研究了热处理工艺条件变化对Al-Zn-Mg系合金组织和性能的影响,探索提高AlZn-Mg系合金综合力学性能的最佳热处理工艺参数。利用正交试验方法设计了热处理工艺方案。结果表明,Al-Zn-Mg系7075合金的最佳热处理工艺制度为470℃×1 h固溶+130℃×24 h预时效+40%热变形+120℃×16 h终时效。经该工艺处理后,7075合金晶粒均匀细化,再结晶程度较高,且可见明显的析出相。强度达到683 MPa,硬度达到87.2 HRB,伸长率达到16.8%。  相似文献   

18.
对自行研制的重载辙叉用贝氏体钢进行了组织和力学性能分析。结果表明:此种材料在锻造态下的组织为无碳化物贝氏体与少量残留奥氏体。该试验钢在锻造态下具有1340 MPa的屈服强度和1440 MPa的抗拉强度,伸长率为18.5%,断面收缩率为53%;试验钢在锻后回火态下的屈服强度为1362 MPa,抗拉强度为1460 MPa,伸长率为20%,断面收缩率为54%;夏比V型冲击试验显示,试验钢锻造态下的常温冲击吸收能量为43.4 J,-50℃时的冲击吸收能量为11.4 J,能满足重载贝氏体钢辙叉低温状态下的使用要求。研究结果表明,该重载辙叉用贝氏体钢具有优良的综合力学性能。  相似文献   

19.
采用三种不同的工艺对钒微合金化新型耐候建筑钢进行了预先热处理,并进行了显微组织观察、拉伸性能、冲击性能和耐腐蚀性能的测试。结果表明,与常规热处理相比,等温预先热处理可使钒微合金化新型耐候建筑钢的晶粒更为细小、组织更为均匀,获得更佳的拉伸性能、冲击性能和耐腐蚀性能。优化的钒微合金化新型耐候建筑钢的预先热处理工艺为580℃×2 h+500℃×1 h,此条件下合金的抗拉强度达892 MPa,屈服强度达840 MPa,断后伸长率达26.8%,96 h乙酸盐雾腐蚀试验后的质量损失率低至3.39%。  相似文献   

20.
利用正交试验研究热处理工艺参数对含钛、锆CLAM钢力学性能的影响,运用极差分析方法分析了正交试验结果。结果表明,各因素对强度的影响顺序为:回火温度回火时间正火温度正火时间;对伸长率的影响顺序为:回火温度回火时间正火时间正火温度;对断面收缩率的影响顺序为:正火温度回火时间回火温度正火时间;正火温度对硬度影响最大,回火温度对冲击功的影响最大。Ti-Zr-CLAM钢最佳热处理工艺为950℃×15 min+700℃×60 min,空冷。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号