首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
在Gleeble-1500D热模拟试验机上对Cu-Cr-Zr合金在应变速率为0.001~10 s-1、变形温度为650~850℃的高温变形过程中的流变应力行为进行了研究。利用光学显微镜分析了合金在热变形过程中的组织演变及动态再结晶机制。结果表明:流变应力随变形温度的升高而减小,随应变速率的提高而增大。升高变形温度以及降低应变速率,均有利于Cu-Cr-Zr合金的动态再结晶发生。从流变应力、应变速率和温度的相关性,得出了该合金高温热压缩变形时的热变形激活能Q为392.5 kJ/mol,同时利用逐步回归的方法建立了该合金的流变应力方程。  相似文献   

2.
利用等温热压缩实验,研究了TG700C合金变形温度为1050~1250℃、应变速率为1~20 s-1、变形量为60%变形条件下的热变形及动态再结晶行为。对材料高应变速率下的变形热效应进行了温升修正,获得了该合金的流变曲线和热变形本构方程,热变形过程的表观激活能为Q=624.762 k J/mol。该合金经过温升修正后的流变曲线呈现稳态的流变应力,不同变形温度和应变速率下合金的流变应力存在差异。合金的动态再结晶形核方式为应变诱导晶界迁移形核,在高温低应变速率下,动态再结晶形核容易发生,再结晶的比例随着温度的升高和应变速率的降低而提高。  相似文献   

3.
《铸造》2017,(2)
在Gleeble-1500D热模拟试验机上,采用高温等温压缩试验,对Cu-Cr-Zr合金在变形温度为600~800℃、应变速率为0.01~5 s~(-1)和总压缩应变量约50%条件下的热变形行为进行了研究。利用光学显微镜观察Cu-Cr-Zr合金在不同变形温度、不同应变速率下的显微组织,分析其组织演变规律。结果表明:应变速率和变形温度的变化强烈地影响合金流变应力的大小;Cu-Cr-Zr合金在热变形过程中发生了动态再结晶,且流变应力随变形温度升高而降低,随应变速率提高而增大;在应变温度为800℃时,合金热压缩变形流变应力出现了明显的峰值应力,表现为连续动态再结晶特征。从流变应力、应变速率和温度的相关性,得出了该合金热压缩变形时的热变形激活能Q和流变应力方程。  相似文献   

4.
利用Gleeble-1500D热模拟试验机对Cu-Cr-Zr和Cu-Cr-Zr-Y合金,进行高温等温压缩试验,研究了在变形温度为650~850℃、应变速率为0.001~10 s-1条件下两种合金的流变应力的变化规律,测定了真应力一应变曲线,从流变应力、应变速率和温度的相关性,得出了该合金热压缩变形时的热变形激活能Q和本构方程,并利用光学显微镜分析了合金在热压缩过程中的组织演变及动态再结晶机制。结果表明:稀土元素Y的加入细化了微观组织,提高了Cu-Cr-Zr合金的动态再结晶体积分数,并且大幅降低了合金的热变形激活能Q,改善了其热加工性能。  相似文献   

5.
对Cu-Cr-Zr-Ag合金在Gleeble-1500D热模拟试验机上进行热压缩实验,对合金在应变速率为0.001~10 s-1、变形温度为650~950℃的高温变形过程中的流变应力行为、热变形过程中的组织演变和动态再结晶机制进行了研究。结果表明,流变应力随变形温度升高而减小,随应变速率提高而增大。Cu-Cr-Zr-Ag合金在热变形过程中的动态再结晶机制受变形温度和应变速率控制。当温度达到950℃,应变速率为0.001 s-1时,Cu-Cr-Zr-Ag合金发生完全的动态再结晶。该合金高温热压缩变形时的热变形激活能Q为343.23 k J/mol,同时利用逐步回归法建立了该合金的流变应力方程。  相似文献   

6.
利用Gleeble-1500D热模拟试验机,对Cu-0.2%Zr-0.15%Y合金进行高温热压缩热模拟试验,对合金在应变速率为0.001~1 s-1、变形温度为550~900℃时,试验过程中的流变应力变化、动态再结晶机制及其微观组织变化进行了研究。结果表明,试验合金流变应力受应变温度和变形速率的影响极大,动态再结晶的显微组织对温度的变化反应敏感,当变形温度降低或者应变速率升高时,其流变应力曲线随之上升。通过流变应力、应变速率和变形温度之间的联系,解出了该合金在热压缩变形时的应力指数(n)、应力参数(α)、结构因子(A)、热变形激活能(Q)以及其本构方程。  相似文献   

7.
为研究Cu-Cr-Zr合金的高温热变形行为,建立Cu-Cr-Zr合金的高温本构模型,采用Gleeble-1500D热模拟实验机对该合金进行不同变形条件下的热压缩实验。实验参数为:变形量60%、应变速率0. 1~5 s-1、变形温度650~900℃。实验结果表明:变形初始阶段加工硬化大于动态软化作用,使得应力值迅速增大至峰值,之后动态软化大于加工硬化作用,使得应力值降低至一定程度再趋于平稳。通过对Cu-Cr-Zr合金应力-应变曲线的变化规律进行分析可得,低应变速率和高变形温度都会促进合金动态再结晶的程度。利用计算软件对实验数据进行计算和整理,将由线性拟合所得数值代入Arrhenius本构模型,可得Cu-Cr-Zr合金的本构模型。  相似文献   

8.
采用Gleeble-1500热模拟实验机对Cu-0.90Cr-0.18Zr合金在变形温度为500~800℃、应变速率为0.01~1 s-1变形条件下进行热压缩变形实验,研究该合金的流变应力、本构方程及动态再结晶临界条件。结果表明:Cu-Cr-Zr合金的流变应力随变形温度的升高而降低,随应变速率的增加而增加,计算出该合金的热变形激活能为584.87 kJ/mol并构建本构方程;利用合金的lnθ-ε曲线出现拐点及-(lnθ)ε-ε曲线出现最小值来研究动态再结晶临界应变。  相似文献   

9.
利用Gleeble-1500D热模拟试验机,对Cu-0.2%Zr-0.15%Y合金进行高温热压缩热模拟试验,对合金在应变速率为0.001~1 s^-1、变形温度为550~900℃时,试验过程中的流变应力变化、动态再结晶机制及其微观组织变化进行了研究。结果表明,试验合金流变应力受应变温度和变形速率的影响极大,动态再结晶的显微组织对温度的变化反应敏感,当变形温度降低或者应变速率升高时,其流变应力曲线随之上升。通过流变应力、应变速率和变形温度之间的联系,解出了该合金在热压缩变形时的应力指数(n)、应力参数(α)、结构因子(A)、热变形激活能(Q)以及其本构方程。  相似文献   

10.
在Gleeble 1500D热模拟试验机上,采用高温等温压缩试验对Cu-Ni-Si-P-Cr合金在应变速率为0.01~5 s 1、变形温度为600~800℃条件下的流变应力行为进行研究,利用光学显微镜分析合金在热压缩过程中的组织演变及动态再结晶机制。结果表明:Cu-Ni-Si-P-Cr合金在热变形过程中发生了动态再结晶,且根据变形温度的不同,真应力—真应变曲线的特征有所不同。流变应力随变形温度升高而降低,随应变速率提高而增大。从流变应力、应变速率和温度的相关性得出该合金热压缩变形时的热变形激活能Q和本构方程。  相似文献   

11.
采用Gleeble-1500D热模拟试验机,研究了Cu-0.8Cr-0.3Zr合金在变形温度为650~950℃、应变速率为0.001~10 s-1、总压缩应变量60%条件下的流变行为,对热变形过程中的组织演变和动态再结晶机制进行了分析,同时分析了该合金的热加工图。结果表明,变形温度越高,应变速率越小,合金越容易发生动态再结晶,且对应的峰值应力也越小。利用逐步回归的方法建立该合金的流变应力方程。绘制了Cu-Cr-Zr合金的热加工图,确定了其热加工时的安全区与失稳区,得出了该合金在实验参数范围内热变形过程的最佳工艺参数:温度范围为850~900℃,应变速率范围为0.1~1 s-1。  相似文献   

12.
利用Gleeble-1500D热模拟试验机,采用等温压缩试验,研究了Cu-Fe-P-Zn-Sn-Mg合金在变形温度为750~950℃、应变速率为0.01~10s-1条件下的流变应力的变化规律,测定了其真应力-应变曲线,并分析了合金在热压缩过程中的组织演变规律。结果表明,合金的真应力-应变曲线具有典型的动态再结晶特征,其流变应力随变形温度的降低以及应变速率的提高而增大,且变形温度越高、应变速率越小,合金越容易发生动态回复和再结晶。在试验基础上,计算并建立了合金热变形过程中流变应力与变形温度和应变速率之间关系的热压缩高温变形本构方程。  相似文献   

13.
在Gleeble-1500D热模拟试验机上对Cu-Cr-Zr-Nd合金进行热压缩实验,对合金在应变速率分别为0.001、0.01、0.1、1、10 s-1,变形温度分别为650、750、850、900、950℃的高温变形过程中的流变应力行为、热变形过程中的组织演变和动态再结晶机制进行研究。结果表明:流变应力随变形温度的升高而减小,随应变速率的提高而增大。Cu-Cr-Zr-Nd合金在热变形过程中的动态再结晶机制受变形温度和应变速率的影响。当温度为900℃、应变速率为10 s-1时,Cu-Cr-Zr-Nd合金发生完全的动态再结晶。从流变应力、应变速率和温度的相关性,得出该合金高温热压缩变形时的热变形激活能Q为404.84 k J/mol,同时利用逐步回归的方法建立该合金的流变应力方程。  相似文献   

14.
在温度T=250~450℃,应变速率为0.001~10s-1的条件下,利用Gleeble-3500热模拟试验机对挤压Mg-7.8%Li-4.6%Zn-0.96%Ce-0.85%Y-0.30Zr合金进行高温热压缩试验,分析流变应力曲线特点。合金的流变应力曲线表现出动态再结晶特征,动态再结晶是热变形过程中的主要软化机制。流变应力峰值随温度的降低和应变速率的增大而升高。稀土相化合物和α相促进β相的动态再结晶,使α相再结晶减缓。在热变形过程中动态再结晶迅速,流变应力曲线表现为临界应变较小,加工硬化迅速被动态软化所掩盖。  相似文献   

15.
研究了镍基高温合金GH4700变形温度和应变速率对热变形行为的影响,建立了该合金的热变形本构方程和热加工图。结果表明:在变形温度1120~1210℃、应变速率0.01~20 s-1条件下,该合金的热变形流变曲线呈现出典型的动态再结晶型特征,存在稳态的流变应力,且随着变形温度的升高和应变速率降低,动态再结晶过程更充分;GH4700合金的热变形激活能为326.3165 kJ/mol;该合金在温度为1180~1210℃,应变速率为10~20 s-1的热压缩变形条件下,能量耗散率η值较高,大于0.30,显微组织发生完全动态再结晶,获得的组织晶粒细小且分布均匀。  相似文献   

16.
通过在Gleeble-1500D热模拟试验机上进行高温等温压缩试验,对Cu-0.4Zr合金在应变速率为0.001~10 s~(-1)、变形温度为550~900℃、最大变形程度为55%条件下的流变应力行为进行探讨。分析了该合金在高温变形时的流变应力和应变速率及变形温度之间的关系,并对其在热压缩过程中的组织演变进行观察。结果表明:热模拟试验中,应变速率和变形温度的变化强烈地影响合金流变应力的大小,流变应力随变形温度升高而下降,随应变速率提高而增大。结合流变应力、应变速率和变形温度的相关性,计算得出了该合金高温热压缩变形时的应力指数(n)、应力参数(α)、结构因子(A)、热变形激活能(Q)和本构方程。合金动态再结晶的显微组织强烈受到应变速率的影响。  相似文献   

17.
热压缩Ti-4.5Al-3Mo-1V合金的流变应力行为   总被引:1,自引:0,他引:1  
宗影影  单德彬  吕炎 《锻压技术》2005,30(3):50-52,55
采用Gleeble-1500热模拟机对Ti-4.5Al-3Mo-1V合金在α β相区进行了等温热压缩实验,根据摩擦修正后的流变应力曲线,研究了此合金在α β相区恒温压缩时的动态软化规律,分析了热变形参数对该合金流变应力的影响,并采用BP人工神经网络的方法建立了该合金高温变形抗力与应变、应变速率和温度对应关系的预测模型。结果表明:合金的流变应力曲线在低应变速率下达到极值后逐渐软化,在高应变速率下,出现极值后连续振动,然后再逐渐软化的现象;软化的主要机制为动态再结晶;流变应力随温度的升高和应变速率的减小而急剧降低;神经网络方法能够较精确地预测材料的流变应力。  相似文献   

18.
采用Gleeble-1500热模拟实验机对Cu-0.92Cr-0.068Zr合金进行高温热压缩实验,研究该合金在变形温度为500 ~ 800℃、应变速率为0.01~1 s-1工作条件下的流变应力行为和组织演变.结果表明:变形温度和应变速率对合金的高温变形有显著影响,流变应力随变形温度的升高而降低,随应变速率的降低而减小;流变曲线表现出动态回复和动态再结晶两种特征.可用包含Zener-Hollomon参数的Arrhenius双曲正弦函数算出Cu-0.92Cr-0.068Zr热变形激活能和高温热变形流变应力本构方程.合金形变组织受变形温度影响强烈.  相似文献   

19.
采用Gleeble-3500热模拟试验机对6061铝合金进行等温热压缩试验,研究变形温度为300~450℃、应变速率为0.01~10s-1、压缩量为60%条件下合金的热变形特性,分析其高温流变应力行为,依据动态材料模型建立热加工图并结合热变形组织分析6061铝合金的热变形机制。结果表明,6061铝合金流变应力随变形温度的升高和应变速率的降低而下降,其高温软化机制以动态回复为主;合金在高应变速率下普遍存在流变失稳,最佳热加工区间变形温度为430~450℃,应变速率为0.01~0.05 s~(-1),该工艺范围内合金出现了部分动态再结晶组织。  相似文献   

20.
为了研究挤压态ZK60镁合金的热变形行为,利用Gleebe-3500热模拟机在变形温度为523~723 K、应变速率为0.01~10 s~(-1)的条件下对挤压态ZK60合金进行了热压缩变形试验。通过真应力-真应变曲线分析了挤压态ZK60合金流变应力与应变速率、变形温度之间的关系,通过引入Z参数建立了挤压态ZK60合金的流变应力本构方程,并观察了其在热压缩过程中的显微组织变化。结果表明:挤压态ZK60合金的真应力-真应变曲线属于动态再结晶型,并且合金的流变应力在高变形温度或低应变速率条件下较低。在变形温度降低或应变速率升高时,动态再结晶晶粒变小,但动态再结晶进行的不充分,再结晶晶粒分布不均匀。通过本构方程计算出挤压态ZK60镁合金的变形激活能Q=122.884 k J/mol,应力指数n=5.096。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号