首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用电子束物理气相沉积(EB-PVD)技术在不锈钢基板上沉积ZrO2涂层.研究基板温度对涂层微观组织和残余应力的影响.结果表明:沉积的涂层均为t-ZrO2结构,涂层表面平整致密;随着基板温度的升高,涂层表面颗粒逐渐长大,表面粗糙度增大;涂层残余应力也随着基板温度的升高而增加,当基板温度为1000 ℃时,涂层残余应力的增量最大,ZrO2涂层的残余应力主要是由于涂层与基板热膨胀系数差别而产生的热应力引起.  相似文献   

2.
采用直流磁控溅射法分别在纳米晶体钛(nano-grained Ti,NG Ti)和粗晶粒工业纯钛(coarse-grained commercial pure Ti,CG Ti)表面沉积TiO2薄膜,用扫描电镜、原子力显微镜和X射线衍射仪分析了薄膜的表面形貌和晶体结构,用摩擦试验机、划痕仪和纳米压痕仪测量两种基材表面薄膜的摩擦学性能、膜/基界面结合力、纳米硬度。系统研究了钛基材微结构纳米化对薄膜形核、生长、晶体结构和力学性能的影响规律。结果表明:钛基材微结构纳米化,显著提高薄膜形核率,细化薄膜晶粒;显著促进薄膜由锐钛矿相向金红石相转变;大幅度提高薄膜纳米硬度、界面结合力、摩擦学性能。  相似文献   

3.
This paper presents a study on thickness dependent physical properties of cadmium selenide thin films. The films of thickness 445, 631 and 810 nm were deposited employing thermal evaporation technique on glass and ITO-coated glass substrates followed by thermal annealing in air atmosphere at 200 °C. These films were subjected to X-ray diffractometer, UV–Vis spectrophotometer, scanning electron microscopy(SEM) and electrometer for structural, optical,surface morphological and electrical analysis respectively. The structural analysis reveals that the films are nanocrystalline in nature with cubic phase and preferred orientation(111). The crystallographic parameters such as lattice constant, interplanar spacing, grain size, internal strain, dislocation density, number of crystallites per unit area and texture coefficient are calculated and discussed. The optical band gap is found in the range 1.75–1.92 e V and observed to increase with thickness.The SEM study shows that the annealed films are uniform, fully covered and well defined. The electrical analysis shows that the conductivity is varied with film thickness and found within the order of semiconductor behavior.  相似文献   

4.
采用反应非平衡磁控溅射技术在青铜及Si(100)衬底上沉积不同负偏压(Vb)的纳米ZrNbAlN薄膜。薄膜结构及成分采用X射线光电子能谱及X射线衍射进行表征。结果表明,Zr和Nb的原子浓度受负偏压影响,Vb导致N 1s谱和Al 2p谱的结合能增加及Zr 3d5/2和Nb 3d5/2谱的结合能降低,薄膜表面形貌的演化受控于Vb。X射线衍射谱显示这些薄膜具有(111)择优取向。此外,薄膜的力学特性及腐蚀行为分别通过纳米压痕测试及腐蚀测试表征。当负偏压为-70 V时,纳米压痕测试显示的最大显微硬度为21.85 GPa,ZrNbAlN膜在青铜衬底上的性能远优于未涂层处理的衬底。在0.5 mol/L NaCl和0.5 mol/L HCl溶液中的腐蚀实验表明,腐蚀势能及腐蚀电流依赖于衬底偏压,在-90 V时能够获得较高的抗腐蚀特性。  相似文献   

5.
1.IntroductionZnO especially in the form ofthin film shasbeen attracting attention because ofits m any applica-tions,such astransparentelectrodes,varistors,phosphors,gassensors,surface acousticw ave devicesandpiezoelectric actuators[1,2].M ore recently,re…  相似文献   

6.
采用磁控溅射在玻璃基底上沉积Mg-Zr-O 复合介质保护膜,研究Zr掺杂含量对薄膜微观结构和放电性能(着火电压,最小维持电压)的影响。结果发现,沉积的Mg-Zr-O薄膜晶粒细小,微观结构仍然保持MgO的面心立方NaCl型结构,所掺杂的Zr以Zr4+形式置换固溶于MgO晶格中。当掺杂Zr浓度为2.03at%时,薄膜具有最强的(200)择优取向和最小的表面粗糙度。适当Zr掺杂的Mg-Zr-O薄膜和纯MgO薄膜相比,其着火电压和最小维持电压分别降低了25和15 V。  相似文献   

7.
The microstructure, texture, residual stress, and tensile properties of Mg–6 Zn–2 Y–1 La–0.5 Zr(wt%) magnesium alloy were investigated before and after extrusion process, which performed at 300 °C and 400 °C. The microstructural characterizations indicated that the as-cast alloy was comprised of α-Mg, Mg–Zn, Mg–Zn–La, and Mg–Zn–Y phases. During homogenization at 400 °C for 24 h, most of the secondary phases exhibited partial dissolution. Extrusion process led to a remarkable grain refi nement due to dynamic recrystallization(DRX). The degree of DRX and the DRXed grain size increased with increasing extrusion temperature. The homogenized alloy did not show a preferential crystallographic orientation, whereas the extruded alloys showed strong basal texture. The extrusion process led to a signifi cant improvement on the compressive residual stress and mechanical properties. The alloy extruded at 300 °C exhibited the highest basal texture intensity, the compressive residual stress and hardness, and yield and tensile strengths among the studied alloys.  相似文献   

8.
王小鹏  李晓延  徐洲  吴奇 《焊接学报》2020,41(12):86-90
文中采用X射线法测试6061-T6铝合金焊接接头残余应力,为探究合理的应力测试工艺方案,对预置应力的等强梁进行X射线应力测试,测试过程中先后增加准直器直径和摇摆角,以衍射曲线半高宽表征衍射晶粒群微观应变,研究在准直器直径和摇摆角增加时衍射晶粒群微观应变均匀性的变化,对材料进行取向成像分析,并对比在晶粒择优取向强弱不同的两个区间内应力测试的结果. 结果表明,应力测试精度与晶粒择优取向的强弱相关,在晶粒择优取向较强的空间范围内,采用大于1°的摇摆角时,小角度晶界附近的相邻亚晶都能够参与衍射,从而使衍射晶粒群微观应变趋于均匀,因此X射线应力测试精度较高,在d = 2 ~ 4 mm范围内,增加准直器直径d可增加衍射晶粒数目,但对衍射晶粒群微观应变均匀性及应力测试精度的影响不大.  相似文献   

9.
Binary Cr-N, Zr-N and Cr-Zr-N films were synthesised using a R.F. reactive magnetron sputtering technique by co-sputtering Cr and Zr. The crystalline structure, morphology, mechanical and tribological properties of the films as a function of Zr content were characterised by X-ray diffraction, microanalysis X (WDS, EDS), X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, nanoindentation, scratch adhesion and pin-on-disc sliding wear tests. The residual stress was calculated with the Stoney formula. The Cr-Zr-N films exhibit a two-phase microstructure, containing a cubic (CrN, ZrN) with hexagonal (Cr2N, Zr2N) phases, as shown by X-ray diffraction. As the Zr content increased, a columnar and compact structure is developed with a low surface roughness. The results reveal that the mechanical and tribological properties of the films were found to depend on the Zr content and the hardness (maximum 26.3?GPa) is greatly improved in comparison with CrN and ZrN films, especially at 31?at.-% Zr. In the scratch test, the hardest film (Cr0.18Zr0.31N0.47) exhibited an adhesive failure at Lc2?=?34.3?N.  相似文献   

10.
In this paper, multilayer coatings of TiN/TiCN/Al2O3/TiN are deposited on the Ti(C, N)-based cermets containing WC, and the effect of WC on the growth and adhesion strength as well as the mechanical properties of the coating are investigated. The multilayer coatings deposited by chemical vapor deposition (CVD) are uniform and dense. TiN coating exhibits a dense fine-grained structures and the Ti (C,N) on TiN coating shows dense columnar structure. The α-Al2O3 layer deposited on transition coating presents coarse grains with limited voids. The grain size of the columnar crystals deposited on the substrates gradually decreases with WC addition. The Al2O3 layer shows a preferred growth orientation of (104) plane. For TiN/TiCN phase, a change in orientation from (111) to (200) is observed. Generally, the (200) preferred orientation enhances and (111) preferred orientation diminishes with increasing WC addition. Strong adhesion of the CVD coating is obtained due to a sufficient amount of chemical elements, especially tungsten, diffusing from the substrate to the interfacial layer. Scratch tests show that the adhesion strength of TiN/TiCN/Al2O3/TiN films gradually increases firstly, and then decreases. With the addition of WC, the hardness, elastic modulus and plasticity index increase at the beginning, and then decrease. The change in nanohardness and elastic modulus is related to the grain size, elemental diffusion, and preferred orientation of the coating.  相似文献   

11.
Diamond like carbon (DLC) thin films with metallic interfacial layers of aluminum and nickel-chromium (Al and Ni-Cr) were grown using a low cost hybrid technique involving a resistive heating thermal evaporator and radio frequency plasma enhanced chemical vapor deposition techniques. Stress, hardness, elastic modulus, bonding, phase, and electrical conductivity of these films were investigated. Introduction of interfacial Al and Ni-Cr layers in DLC led to drastic improvement of its conductivity along with a significant reduction in residual stress but with some reduction of hardness and the elastic modulus. The structural and surface properties of thin films were studied using X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy techniques.  相似文献   

12.
ZnO films for electronic applications were deposited by radio-frequency (rf) sputtering onto various metal bottom electrodes (Pt/Ti, W, Ni) to investigate such structural properties as crystallinity and surface morphology. The crystallinity, surface morphology and composition of the as-deposited films were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM) and Rutherford back-scattering spectrometry (RBS), respectively. The preferred orientation and surface morphologies were strongly influenced by the type of bottom electrodes. The ZnO films with (200) texturing deposited on Pt/Ti/SiO2/Si showed a smoother and smaller grain size than those deposited on W and Ni. The ZnO films on Pt and W electrodes exhibited compressive residual stress. This article is based on a presentation made in the 2002 Korea-US symposium on the “Phase Transformations of Nano-Materials”, organized as a special program of the 2002 Annual Meeting of the Korean Institute of Metals and Materials, held at Yonsei University, Seoul, Korea on October 25–26, 2002.  相似文献   

13.
1 Introduction Pure copper and copper alloys are widely used due to the high electrical conductivity, high heat transfer, corrosion resistance and excellent formability[1-5]. But the strength of pure copper is low and the strength gained during cold worki…  相似文献   

14.
硼源浓度对钛基掺硼金刚石薄膜生长的影响   总被引:1,自引:0,他引:1  
利用微波等离子体化学气相沉积法(MPCVD)在钛基底上制备了掺硼金刚石(BDD)薄膜.研究了硼源浓度对BDD薄膜生长的影响.分别采用扫描电子显微镜,拉曼光谱,X射线衍射技术对薄膜的表面形貌、残余应力、择优取向及TiC含量进行了分析.结果表明,硼源浓度升高对金刚石薄膜(111)织构生长有促进作用;随着掺硼浓度的增加,Ti...  相似文献   

15.
张啸宇  谭俊 《表面技术》2015,44(12):80-84,91
目的研究多层薄膜的界面对薄膜性能的影响。方法通过直流磁控溅射法在45#钢表面制备Ti N及Ti/Ti N多层薄膜,采用扫描电镜和XRD衍射分析仪对薄膜表面形貌及相结构进行观察和分析,使用纳米压痕仪、电子薄膜应力分布测试仪对Ti N及Ti/Ti多层薄膜的力学性能以及残余应力大小进行研究,并运用电化学设备对Ti N及不同调制周期的Ti/Ti多层薄膜的耐腐蚀性能进行研究。结果制备的Ti N及Ti/Ti N多层薄膜表面光滑且结构致密,Ti N晶粒细小且为非晶相;薄膜力学性能良好,内部均存在残余压应力。随着调制周期的减小,弹性模量和硬度先减小后增大,内部残余应力逐渐减小且分布不均匀程度逐渐增大。薄膜在H_2SO_4中的腐蚀试验表明:当Ti/Ti N多层薄膜调制周期为1μm时,多层薄膜的耐腐蚀性能不如Ti N薄膜,随着Ti/Ti N多层薄膜随调制周期的减小,多层薄膜的耐腐蚀性能逐渐升高;当调制周期为0.5μm时,Ti/Ti N多层薄膜的耐蚀性能已超过Ti N薄膜。结论 Ti/Ti N多层薄膜界面的增多有助于减小薄膜的残余应力,并且可提高薄膜的耐蚀性能。  相似文献   

16.
为探究脉冲频率对通过高功率脉冲磁控溅射制备TiN薄膜组织力学性能的影响,选用Ti靶和N2气体,采用反应磁控溅射技术通过改变高功率脉冲磁控溅射(HiPIMS)电源脉冲频率在Si(100)晶片上制备不同种TiN薄膜。利用X射线衍射仪(XRD)、X射线光电子能谱仪和扫描电子显微镜(SEM)对所制薄膜晶体结构和成分、表面和断面形貌进行分析,利用纳米压痕仪对薄膜的硬度和弹性模量进行表征,并计算H/E和H^(3)/E^(2)。结果表明,高离化率Ti离子轰击促使薄膜以低应变能的晶面优先生长,所制TiN薄膜具有(111)晶面择优取向。薄膜平均晶粒尺寸均在10.3 nm以下,随着脉冲频率增大晶粒尺寸增大,结晶度和沉积速率降低,柱状生长明显,致密度下降,影响薄膜力学性能。在9 kHz时,TiN薄膜的晶粒尺寸可达8.9 nm,薄膜组织致密具有最高硬度为30 GPa,弹性模量374 GPa,弹性恢复为62.9%,具有最优的力学性能。  相似文献   

17.
Cu−0.15Zr (wt.%) alloy with uniform and fine microstructure was fabricated by rapid solidification followed by hot forging. Evolution of microstructure, mechanical properties and electrical conductivity of the alloy during elevated-temperature annealing were investigated. The alloy exhibits good thermal stability, and its strength decreases slightly even after annealing at 700 °C for 2 h. The nano-sized Cu5Zr precipitates show significant pinning effect on dislocation moving, which is the main reason for the high strength of the alloy. Additionally, the large-size Cu5Zr precipitates play a major role in retarding grain growth by pinning the grain boundaries during annealing. After annealing at 700 °C for 2 h, the electrical conductivity of samples reaches the peak value of 88% (IACS), which is attributed to the decrease of vacancy defects, dislocations, grain boundaries and Zr solutes.  相似文献   

18.
硬质合金涂层刀具的性能与其内在结构密切相关,特别是涂层部分。利用X射线衍射进行硬质合金涂层性能的综合分析,可测定涂层的物相组成、涂层厚度、晶粒尺寸、残留应力以及涂层中碳的含量等等。观察其衍射图谱,对各种涂层成分如:Al2O3、TiC、TiN、η相等进行分析,探讨他们对涂层刀片性能的影响;通过衍射峰强度、强度比、D值等定性分析各物相及其定性含量,确定是否存在择优取向。X射线衍射分析是一种非破坏性的测定方法,检测快速方便,有助于生产中优化涂层工艺,提高涂层的整体加工性能,对硬质合金涂层的质量控制、机理研究和新工艺的研发均有着不可忽视的作用。  相似文献   

19.
It has been reported that the element scandium(Sc) is the most effective modificator which can significantly refine the grain size, prohibit recrystallization process and increase the strength. Adding trace of Sc in 7000 series aluminum alloys is considered to be an effective way to modify its micros tructure and promote mechanical properties. In order to study the effect of Sc element on ascast microstructure of Al-Zn-Mg-Cu-Zr alloy, ingots containing different amounts of Sc were prepared by ferrous-mold cast. Microstructures were characterized by means of differential scanning calorimeter(DSC), X-ray diffraction(XRD), optical microscope(OM) and scanning electrical microscope(SEM). The results indicate that when the Sc level exceeds a critical concentration,Al_3(Sc,Zr) primary phase would form in the melt and act as an efficient nucleant, resulting in very refined grain and an equiaxed grain structure. Sc element reduces the number of eutectic phases formed during solidification,coupled with an increase in the concentration of major alloying elements retained in the solute. This behavior suggests possible benefits in improving the integrated properties of terminal products.  相似文献   

20.
对比研究了Zr添加(0.05,0.15和0.25wt%)对Al-Zr合金固溶态和固溶轧制态时效析出行为、硬度和导电率的影响。结果表明,固溶态Al-Zr合金的晶粒尺寸随Zr含量的增加而减小,但是固溶轧制态Al-Zr合金的晶粒尺寸对Zr添加量不敏感。固溶态Al-Zr合金在350 ℃时效过程中,由于Al3Zr沉淀相的析出,合金硬度随Zr含量增大而增大,但是更强的点阵畸变场则导致导电率降低。而在固溶轧制态合金的时效中,大量变形位错的存在促进了Al3Zr相的析出,Al-Zr合金在250 ℃下时效具有比350 ℃时效更优的硬度和导电率的综合性能。特别是0.25wt%Zr添加的Al-Zr合金,其析出强化可以有效补偿时效过程中位错湮灭引起的硬度降低,保持较高的硬度。综合考虑,固溶轧制态Al-0.25wt%Zr合金经250 ℃时效25 h后具有最优的硬度(47.5 HV0.5)和导电率(55.6%IACS)组合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号