首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
对传统淬火-配分钢(QP钢)添加合金元素Ni和Nb,并对实验钢采用两相区QP工艺处理,得到了一种超细晶QP钢,分析了实验钢的显微组织和力学性能。结果表明,该种成分钢得到了块状铁素体+块状马氏体+残留奥氏体的混合组织,且晶粒达到了亚微米级别。由于残留奥氏体的相变诱发塑性(TRIP)效应,使得实验钢获得了兼具强度和塑性的优异力学性能。在退火温度为690℃时,实验钢抗拉强度达到1195 MPa,断后伸长率为23.5%,强塑积达到28 GPa·%。  相似文献   

2.
研究了淬火冷却终止温度对QP处理TRIP800钢组织和力学性能的影响。利用拉伸试验机、XRD和金相显微镜进行了性能测试和组织分析。结果表明:经QP处理后的试验钢具有较高的强度和塑性,其微观组织主要为马氏体、贝氏体、铁素体和残留奥氏体,在淬火冷却终止温度为300℃时得到最佳的综合力学性能,抗拉强度达到969.09 MPa,伸长率达到28.24%,得到最高的强塑积27 GPa·%。  相似文献   

3.
利用SEM、XRD分析及拉伸试验,研究了逆转变+淬火-配分(ART+QP)复合工艺对完全淬火后0.22C-2.0Mn-1.8Si钢组织性能的影响。结果表明:经ART+QP工艺处理后,该钢组织为亚温铁素体、贝氏体/马氏体和均匀分布的残留奥氏体。逆转变奥氏体富集Mn、C元素,淬火-配分过程中碳自马氏体配分至残留奥氏体时二次富C,使其稳定化,因此该钢室温下获得残留奥氏体的含量超过15%。在拉伸变形过程中残留奥氏体转变成马氏体的TRIP效应,使得钢材在变形过程中获得稳定的加工硬化能力,实现了良好的强塑性结合,抗拉强度达到1233 MPa,屈服强度为893 MPa,均匀伸长率29.6%,强塑积高达36 GPa·%以上。  相似文献   

4.
Q&P工艺处理钢的单轴拉伸性能研究   总被引:3,自引:1,他引:2  
研究了低合金马氏体钢经QP(Quenching and partitioning,淬火和配分)工艺处理后的单轴拉伸性能,并与传统QT(Quenching and Tempering,淬火+回火)工艺进行比较,分别用SEM和XRD进行微观组织观察和残留奥氏体量的测量。结果表明,与QT工艺相比,在获得相同断后伸长率时,QP工艺处理的样品可以获得较高的抗拉强度,同时具有较高的加工硬化率和裂纹形成能。拉伸过程中,QP组织中新鲜马氏体强化基体,残留奥氏体协调变形、松弛应力、钝化裂纹,由硬基体和残留奥氏体组成的多相组织使QP工艺处理钢获得高强度和高塑性的配合。  相似文献   

5.
对一种含Cu低碳硅锰钢分别采用IQ、QP和IQP热处理工艺,研究双相区Cu配分行为并分析其对马氏体组织形貌、残留奥氏体及力学性能的影响。结果表明,试验钢经IQ工艺处理,在双相区保温时Cu元素从铁素体向奥氏体中配分,Cu配分明显,并且不影响C和Mn的配分效果。试验钢经IQP工艺处理后,组织基本为板条马氏体,且马氏体板条清晰,部分板条有断裂的现象。与经QP工艺处理相比,试验钢经IQP工艺处理后残留奥氏体体积分数显著提高,从9.6%提高到了13.2%。对比QP工艺,试验钢经IQP工艺处理后,抗拉强度有一定降低,但伸长率大大提高,强塑积达到27 GPa·%。  相似文献   

6.
研究了QP工艺对添加硅和锰的低碳钢组织性能的影响。通过X射线衍射仪、电子背散射衍射技术、拉伸试验等对不同QP工艺参数条件下试验钢的组织和性能进行了测试分析。结果表明,经过QP工艺热处理后,试验钢中形成了一定比例的纳米级的残留奥氏体。随着配分温度的升高,试验钢中残留奥氏体含量升高,抗拉强度降低,伸长率增加。配分温度为450℃时,随着配分时间的增加,试验钢中残留奥氏体含量先增加后降低,在配分时间为20 s时达到最大值,但抗拉强度降低,伸长率呈增加趋势。强塑积在450℃配分20 s时最大,与残留奥氏体含量变化一致。  相似文献   

7.
含铌TRIP钢的显微组织和残留奥氏体稳定性分析   总被引:1,自引:0,他引:1  
研究了含Nb与不含Nb两种冷轧TRIP钢热处理后的显微组织和力学性能,并用X射线衍射法计算了TRIP钢中残留奥氏体含量及残留奥氏体中的碳含量.试验结果表明,TRIP钢中铁素体体积分数随退火温度的升高逐渐减少,在相同热处理工艺下,与不含Nb试样比较,含Nb试样的残留奥氏体中碳含量较高,强塑积较大.残留奥氏体量大约相同时,含Nb试样残留奥氏体更为稳定,综合力学性能也更好.  相似文献   

8.
应用CCT-AY-Ⅱ型钢板连续退火机、X射线衍射、扫描和透射电镜、EBSD和拉伸试验等研究了TRIP钢(0.2C-1.5Si-2Mn-0.43Cu-0.26Ni)贝氏体区(350~470℃)等温处理对组织和性能的影响。结果表明:在贝氏体等温温度为410℃时,TRIP钢综合力学性能最佳,抗拉强度达到1088 MPa,伸长率16.88%,强塑积18365 MPa·%。残留奥氏体在TRIP钢中存在的形态有粗大块状、薄膜状和细小粒状。其中薄膜状的残留奥氏体属于亚稳奥氏体,形变过程中发生渐进式转变,极大地发挥TRIP效应。残留奥氏体中的碳含量和薄膜厚度是决定残留奥氏体稳定性的关键因素。  相似文献   

9.
唐代明 《热处理》2009,24(6):6-8
低合金TRIP钢的显微组织中的残留奥氏体使其具有优良的强度和延性组合。概述了低合金TRIP钢的热处理工艺与残留奥氏体形成的关系。分析了冷轧TRIP钢退火前组织、临界区退火以及中温等温处理对残留奥氏体形成的影响。对低合金TRIP钢中残留奥氏体的形成等物理冶金学进行研究将促进其发展和推广应用。  相似文献   

10.
采用连续退火模拟机CCT-AY-Ⅱ对中锰QP钢(0.2C-5Mn-1.5Si中锰钢,锰含量4.92%)进行热处理实验,利用SEM、EBSD、拉伸试验以及X射线衍射法研究了不同退火温度对中锰QP钢的组织和力学性能、残留奥氏体含量的影响。结果表明,随退火温度的升高,抗拉强度逐渐升高,屈服强度逐渐降低,伸长率和强塑积先升高后降低,在660℃奥氏体化QP处理后力学性能最佳,抗拉强度为1040 MPa,断后伸长率为33.7%,强塑积达35.9 GPa·%;残留奥氏体体积分数随着退火温度的升高逐渐增多,最高达25%;试验钢对两相区奥氏体化温度非常敏感,稍高或稍低的退火温度都会导致强塑积的急剧下降,而在650~670℃之间退火时强塑积可达30.0 GPa·%以上。  相似文献   

11.
通过奥氏体化预处理、两相区临界退火以及贝氏体等温处理这3个过程制备了含退火马氏体组织的TRIP钢(TAM钢),利用拉伸试验机、扫描电镜、透射电镜以及X射线衍射对其力学性能和微观组织进行了表征,在此基础上研究了奥氏体化预处理温度对力学性能及微观组织的影响规律。结果表明,含退火马氏体组织的TRIP钢,具有良好的断后伸长率和强塑积,尤其是在奥氏体化预处理温度为950℃时,其断后伸长率高达40%以上,强塑积高达27 GPa·%;其微观组织由铁素体、贝氏体、残留奥氏体以及退火马氏体构成,退火马氏体精细结构呈现板条状,板条间存在残留奥氏体;奥氏体化预处理温度对残留奥氏体体积分数没有显著影响,但对最终组织中的退火马氏体体积分数以及晶粒大小有显著影响。  相似文献   

12.
通过奥氏体化预处理、两相区临界退火以及贝氏体等温处理这3个过程制备了含退火马氏体组织的TRIP钢(TAM钢),利用拉伸试验机、扫描电镜、透射电镜以及X射线衍射对其力学性能和微观组织进行了表征,在此基础上研究了奥氏体化预处理温度对力学性能及微观组织的影响规律。结果表明,含退火马氏体组织的TRIP钢,具有良好的断后伸长率和强塑积,尤其是在奥氏体化预处理温度为950℃时,其断后伸长率高达40%以上,强塑积高达27 GPa·%;其微观组织由铁素体、贝氏体、残留奥氏体以及退火马氏体构成,退火马氏体精细结构呈现板条状,板条间存在残留奥氏体;奥氏体化预处理温度对残留奥氏体体积分数没有显著影响,但对最终组织中的退火马氏体体积分数以及晶粒大小有显著影响。  相似文献   

13.
采用CCT-AY-Ⅱ型钢板连续退火机模拟分析了退火时间对中锰TRIP钢0.1C-6Mn组织性能的影响规律。采用SEM、EBSD等微观方法观察不同工艺下制备的中锰TRIP的微观组织,利用XRD法测量了残留奥氏体量,实验测量了其力学性能。结果表明,650℃退火1 min时伸长率就达到了18%,抗拉强度1260 MPa,强塑积23 GPa%。通过EBSD证明试验钢退火马氏体只发生了回复,没有发生再结晶,且获得了超细晶组织。通过对保温3 min试验钢残留奥氏体研究,试验钢高的伸长率是由TRIP效应和组织的超细晶共同提供的。  相似文献   

14.
Q&P工艺对冷轧高强钢中残留奥氏体的影响   总被引:2,自引:0,他引:2  
对冷轧C-Si-Mn系高强钢进行了淬火与配分(QP)处理。利用扫描电镜、电子背散射衍射、X射线衍射等实验手段,研究了QP工艺参数与残留奥氏体量的关系。结果表明,残留奥氏体量在峰值淬火温度周围较大范围内变化不大,均在15%以上。配分温度的升高和配分时间的增加有助于残留奥氏体量的提高,过高的配分参数则会导致残留奥氏体的分解与碳化物的析出。实验钢于760℃淬火至160℃后经450℃配分60 s,残留奥氏体量可以达到22%,保证了较高的强塑积23 GPa·%,其中抗拉强度1518 MPa,伸长率15.2%。  相似文献   

15.
采用IQ、QP及IQP热处理工艺,研究了预先Mn配分处理对低碳高强QP钢组织和力学性能的影响。结果表明,经IQ工艺处理的钢,由铁素体-珠光体的初始组织转变为铁素体-马氏体两相组织,转变过程中C、Mn元素不断向奥氏体内扩散,转变结束时C、Mn元素在奥氏体内呈现明显的富集现象。对于QP工艺,随着碳配分时间的延长,钢的抗拉强度都不断降低,伸长率先增加后减小,碳配分时间为60 s时,试样中残留奥氏体体积分数最大为12%,材料的塑性最优,其强塑积为20 GPa·%;相比QP工艺,由于经IQP工艺处理后Mn元素仍然富集,在相同的碳配分时间下,钢的抗拉强度降低,但伸长率却得到了提高,碳配分时间为120 s时,试样中残留奥氏体体积分数最大为15%,材料的塑性最优,且强塑积达到最大值22 GPa·%。  相似文献   

16.
采用扫描电镜和X射线衍射仪研究了配分时间对0.16C-1.8Mn-1.5Si钢组织演变、力学性能和残留奥氏体含量的影响。结果表明,经QP工艺处理后,随着配分时间的不断增加,试验钢的淬火马氏体转变为回火马氏体,渗碳体逐步析出;抗拉强度逐渐减小,伸长率先增大后减小;在配分时间为120 s时,抗拉强度为1012 MPa,伸长率最大值达到23%,强塑积最大达到23 276 MPa·%,残留奥氏体量达到最大值为14.4%;在不同的配分时间下,钢的伸长率变化趋势与残留奥氏体量的变化趋势基本一致,拉伸断口形貌具有典型的韧性断裂特征。  相似文献   

17.
QP钢经淬火配分(QP)工艺处理,所得组织由马氏体和残留奥氏体复合相共同组成,因其具有高强度和高塑性而备受关注。QP工艺的关键在于获得更多的残留奥氏体和提高残留奥氏体的稳定性。C从马氏体向奥氏体配分是稳定残留奥氏体的重要因素,并且受到其他因素的影响,一直是QP钢领域研究的重点和难点。本文从C配分的热力学、动力学,主要合金元素的影响,热处理工艺,组织和力学性能的关系4个方面,简要综述了国内外QP钢的研究进展,并对未来的研究方向进行了展望。  相似文献   

18.
在商用热成形钢B1500HS成分基础上,通过提高Si含量获得一种可适用于淬火-配分(QP)处理的新钢种,研究了其QP处理后的微观组织与力学性能。采用光学电镜(OM)、透射电子显微镜(TEM)对材料的微观组织进行观察分析,采用磁性法(PPMS)测定残留奥氏体含量。结果表明,Si含量高的钢经QP处理后得到板条马氏体+残留奥氏体组织,而低Si含量钢为全马氏体组织。不同Si含量材料的力学性能差别明显,Si含量由0.25wt%提高至0.89wt%时,屈服强度和抗拉强度提高约80~150 MPa,且Si含量高的钢对QP处理的温度和时间条件比低Si含量钢更敏感。结果显示Si含量较低的钢进行不同条件的QP处理后,材料的强塑积基本不变,而Si含量的提高使热成形钢适于进行QP处理,260℃×300 s条件下获得强塑积高于20 GPa·%的综合力学性能,比水淬试样强塑积高约71%。  相似文献   

19.
研究了淬火温度对Q-P处理TRIP600试验钢组织和力学性能的影响。利用金相显微镜、XRD和拉伸试验机进行了组织分析和性能测试。结果表明:Q-P处理后的试验钢,其显微组织主要为马氏体、贝氏体、铁素体和残余奥氏体;当淬火温度为350℃时,得到最佳的综合力学性能,屈服强度达到578.6 MPa,抗拉强度达到759.3 MPa,伸长率达到30.2%,强塑积达到22930.8MPa·%。  相似文献   

20.
研究了不同工艺处理时C、Mn配分对0.17C-1.83Mn-1.58Si钢组织性能和残留奥氏体的影响,结果表明:钢经不同工艺处理后组织都为马氏体,其中DQ工艺处理后马氏体部分呈块状形态,Q&P工艺得到的马氏体板条较I&P&Q工艺更细长,I&Q&P工艺得到“板条束”马氏体形貌;钢经I&P&Q工艺处理后伸长率较DQ工艺提高了5.7%,残留奥氏体量为3.7%;,钢经Q&P工艺处理后伸长率达到22.8%,残留奥氏体量提高到6.8%;经I&Q&P工艺处理钢具有最优异的力学性能,强塑积达到31 800 MPa·%,残留奥氏体量达到最大的10.6%;Mn配分是在奥氏体化之前提高奥氏体稳定性,C配分增塑效果高于Mn配分,C、Mn配分综合作用使钢具有最优的组织性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号