首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用超声波搅拌方法制备了原位自生Mg_2Si/Al基复合材料,研究了超声波功率对复合材料凝固组织和力学性能的影响。结果表明:超声波搅拌不但能够细化初生Mg_2Si颗粒,改变凝固组织形貌,而且具有除气除杂功能,二者共同提高了Mg_2Si/Al基复合材料的力学性能。在本实验条件下:超声波功率为150 W时,Mg_2Si/Al基复合材料抗拉强度最高,为178 MPa;而伸长率则在超声波功率为100 W时最好,为4.94%。  相似文献   

2.
采用原位法和半固态搅拌铸造法制备了体积分数为1%,尺寸分别为1μm、500 nm和100 nm的Al_2O_3颗粒和4wt%Mg_2Si颗粒增强铝基复合材料,利用金相显微镜、扫描电镜、X射线衍射仪和能谱仪对材料显微组织、相组成和元素组成进行分析,并对其拉伸性能进行测试。结果表明:Al_2O_3颗粒的加入使该复合材料基体组织得到细化,并且Al_2O_3颗粒尺寸越小组织越细。添加Al_2O_3颗粒使复合材料抗拉强度提高,随着Al_2O_3颗粒尺寸的减小,复合材料抗拉强度升高,而伸长率降低。Mg_2Sip/Al复合材料和(Al2O3(1μm)+Mg2Si)p/Al复合材料的断裂方式主要是韧脆混合型断裂,(Al_2O_3(500 nm)+Mg_2Si)p/Al复合材料和(Al_2O_3(100 nm)+Mg_2Si)p/Al复合材料断裂方式主要为韧性断裂。  相似文献   

3.
在原位Mg_2Si/Mg-7Al复合材料的凝固过程施加脉冲磁场,研究了放电电压对复合材料组织和力学性能的影响。结果表明,随着放电电压增加,复合材料中的初生Mg_2Si相变得细小,其形貌由等轴枝晶状逐渐转变为颗粒状。β-Mg_(17)Al_(12)相由不连续网状逐步转变为孤岛状和颗粒状共存,分布变得更加均匀。随着放电电压的增加,复合材料的抗拉强度和伸长率均逐渐提高。当放电电压为300 V时,复合材料的抗拉强度和伸长率较未处理的复合材料分别提升了37.3%和137.5%。  相似文献   

4.
研究了过量Si含量对原位自生15Mg2Si/Al复合材料组织与力学性能的影响。结果表明,随着Si含量的增加,初生Mg2Si的平均尺寸先增大后减小,当Si含量为5%时,初生Mg2Si的尺寸为41μm,而当增加到10%时,初生Mg2Si的尺寸减小到24μm。同时,随着过量Si含量的增加,Al-Mg2Si二元共晶组织逐渐减少,直至基本消失。另外,α-Al也随着Si含量的增加而发生球化,当Si含量为8%时,α-Al的形貌接近球形。随着过量Si含量从0增加到10%,原位自生15Mg2Si/Al复合材料的抗拉强度从172MPa增加到200MPa,伸长率从1.4%提高到3.1%。  相似文献   

5.
采用原位合成工艺制备了20Mg_2Si/Al-5Si复合材料,并研究了Sb+Ce复合变质对初生Mg_2Si相的影响。结果表明,当添加0.2%的Sb,随Ce添加量增加,初生Mg_2Si的平均尺寸呈现先减小后增加的趋势,初生Mg_2Si颗粒在0.2%的Sb+0.6%的Ce时最为细小,约为28μm,且分布均匀;0.4%的Sb+xCe复合变质时,有效细化了初生Mg_2Si相,其平均尺寸为30~40μm;0.6%的Sb+xCe复合变质时,初生Mg_2Si颗粒细化效果最佳,平均尺寸为27~31μm,且颗粒圆形度高,分布更加均匀。  相似文献   

6.
研究了不同含量稀土Er对原位自生Mg_2Si/AZ91复合材料组织和性能的影响,并讨论其变质机理。结果表明,适量的Er能有效细化原位自生Mg_2Si/AZ91复合材料基体的晶粒尺寸,同时改变初生Mg_2Si相在基体中的大小、形貌和分布。当Er加入量为0.5%,基体组织细化效果最为显著,其晶粒由250μm细化至180μm,初生Mg_2Si相由粗大汉字状转变为短棒状,大小由50μm缩减至20μm,合金的抗拉强度和伸长率也分别由168MPa和1.8%提升至190MPa和2.7%。  相似文献   

7.
研究了混合RE变质,混合RE+P变质以及熔体过热对18Mg2Si/Al复合材料组织与性能的影响。结果表明,未变质条件下,18Mg2Si/Al复合材料中初生Mg2Si为粗大的多角状或树枝状,平均晶粒尺寸为65.3μm,而且尺寸分布不均匀。经过3种不同的方法处理后,复合材料中初生Mg2Si得到了不同程度的细化,其中混合RE+P复合变质使初生Mg2Si尺寸达到15μm,共晶Mg2Si呈颗粒状。过热处理后初生Mg2Si达到了13μm,共晶Mg2Si呈絮状。原位自生18Mg2Si/Al复合材料的抗拉强度和伸长率得到了不同程度的提高。  相似文献   

8.
研究了不同Si C颗粒添加量的Mg_2Si/Al复合材料的显微组织和耐磨性能,并分析了Si C的增强作用机理。结果表明,未添加Si C的Mg_2Si/Al复合材料中主要物相为Al、Mg_2Si、Si和Al_2Cu相;添加Si C颗粒后,主要物相除了Al、Mg_2Si、Si和Al_2Cu相外,还含有Si C和Mg Al_2O_4相;随着Si C颗粒的添加,Mg_2Si/Al复合材料中初生Mg_2Si相的形态更加规则,平均尺寸有所减小;添加10%Si C的Mg_2Si/Al复合材料的耐磨性能优于未添加Si C的Mg_2Si/Al复合材料和HT200铸铁。  相似文献   

9.
《铸造》2017,(8)
利用振动铸造法制备了15%Mg_2Si/356-1.5Fe再生铝基复合材料,主要考察了振动频率对其组织和拉伸强度的影响。结果表明:在复合材料凝固过程中施加机械振动可使粗大的共晶硅相破碎;随着振动频率的增加,富Fe相和Mg_2Si颗粒相平均尺寸不断减小,当振动频率为200 Hz时,富Fe相平均长度和Mg_2Si相平均直径较未振动时分别减小约34%和20%。复合材料的抗拉强度和伸长率随着振动频率的增加显著提高,振动频率从0增加到200 Hz时,复合材料抗拉强度和伸长率较未振动时均提高约65%。  相似文献   

10.
通过重力铸造和等温热处理结合热挤压制备了航空电子用Mg_2Si/Al复合材料,研究了不同等温时间和等温温度下的复合材料的显微组织和力学性能变化,并探讨了其作用机理。结果表明,等温热处理后组织中的Mg_2Si相由多边形小块状向球状或者椭球状转变,且增强相Mg_2Si相随着等温时间延长,球化程度有逐渐增加的趋势;等温不同温度和不同时间的半固态挤压Mg_2Si/Al复合材料的抗拉强度和断口伸长率都高于重力铸造Mg_2Si/Al复合材料;航空电子用Mg2Si/Al复合材料的断裂主要来自基体断裂、初生Mg_2Si相开裂和初生Mg2Si相与基体界面开裂。  相似文献   

11.
研究了熔体温度对原位自生Al-18Mg_2Si(质量分数,%)复合材料组织和力学性能的影响。结果表明:随着熔体温度的提高,Al-18Mg_2Si复合材料中,初生Mg_2Si由粗大的树枝状变成多边形状、块状,有的成为颗粒状。熔体温度为870℃时,初生Mg_2Si最细小,平均晶粒尺寸为12μm(形状因子最大);超过870℃后,晶粒尺寸略有增大(形状因子减小)。随着熔体温度的提高,共晶Mg_2Si由片层状变为颗粒状,而后又变成颗粒状和棒状的混合组织,共晶团尺寸先减小后增大。复合材料的抗拉强度、延伸率、硬度随熔体温度的提高先增大后减小,并在870℃过热时,力学性能达到最佳值。DTA分析表明,随着熔体温度的提高,合金的凝固开始温度先降低后升高,形核过冷度呈先增大后减小的变化趋势。熔体温度达到870℃时,形核过冷度最大,复合材料的硬度最大,耐磨性最好。  相似文献   

12.
研究了铈含量和热处理工艺对原位合成Al-15Mg_2Si-Si复合材料组织与性能的影响规律。结果表明:未变质时,Al-15% Mg_2Si-Si复合材料中初生Mg_2Si呈粗大的树枝状;加入Ce变质剂后,初生Mg_2Si变为块状,尖角被钝化,分布均匀。当变质剂Ce含量为0.8%时,初生Mg_2Si的尺寸最细小,为14μm,比未变质时减小了82.1%,并且其力学性能最佳,其抗拉强度、条件屈服强度、伸长率分别为215 MPa、157.1 MPa、2.3%。Ce含量为0.8%的Al-15% Mg_2Si-Si复合材料,在510℃固溶8 h+175℃时效5 h效果最好,块状初生Mg_2Si相几乎接近圆形,共晶Mg_2Si和共晶Si呈细小的颗粒状分布在基体上,硬度比铸态提高了24.2%。  相似文献   

13.
采用原位反应法制备了20Mg_2Si/Al-Si复合材料,研究了P对该复合材料微观组织和力学性能的影响。结果发现,未添加P时,复合材料中的初生Mg_2Si相呈现出粗大的树枝晶和多边形块状;当加入P后,初生Mg_2Si相转变为细小的颗粒状,其实质是P与Al形成了AlP化合物,并充当了初生Mg_2Si相的异质形核核心。未变质时,复合材料的硬度(HB)和抗拉强度约为71.5和102.1 MPa,而加入P后,复合材料的硬度(HB)和抗拉强度分别增加至97.2和133.6 MPa。  相似文献   

14.
采用光学显微镜和场发射扫描电镜,研究超声波对原位Mg2Si/A1复合材料中初生Mg_2Si形态的影响。研究结果表明:超声波处理使初生Mg2Si的晶粒尺寸从150μm降低到20μm,初生Mg_2Si形态发生改变。在二维形貌中,未实施超声波振动处理的初生Mg_2Si晶粒生长为含有空腔的粗大颗粒,共晶组织生长于其中,相应的三维形态为含有漏斗状空腔的八面体和十四面体。超声波处理后的初生Mg_2Si晶粒变成细小、实心三维形态的颗粒,颗粒棱角已发生钝化效应。  相似文献   

15.
针对Al-18Mg_2Si合金力学性能差的问题,采用OM、XRD、SEM等手段研究单独添加Nd与Nd-Ti-B复合变质处理对Al-18Mg_2Si合金凝固组织与力学性能的影响。结果表明,经0.25%的Nd变质处理后,初生Mg_2Si尺寸由未变质的65μm减小到26μm,包裹初生Mg2Si的α-Al相数量增加;共晶Mg2Si片间距由未变质的3~5μm降低到1μm,共晶团尺寸减小,数量增加;经0.25%的Nd+0.1%的Ti+0.02%的B变质处理后,初生Mg_2Si尺寸减小到15μm,数量增加1倍。经0.25%的Nd和0.25%的Nd+0.1%的Ti+0.02%的B变质处理后,Al-18Mg_2Si合金的抗拉强度分别提高9.6%和23.6%,伸长率分别提高33%和75%。Nd-Ti-B变质处理效果优于单一Nd变质处理。  相似文献   

16.
在Mg-9Al合金中添加3%~9%的Si,采用高频感应加热熔炼、随炉冷却凝固,获得了Mg_2Si含量高达10%~30%的Mg-9Al基复合材料。利用光学显微镜、扫描电镜、能谱分析、X射线衍射分析及差热分析(DTA),研究了复合材料的凝固组织与形成机理。结果表明,复合材料都是由Mg_2Si、Mg17Al12和α-Mg等3种相组成,而Mg_2Si和Mg17Al12含量随Si含量增加而增加;复合材料凝固过程中,首先析出初生Mg_2Si,之后形成Mg+Mg_2Si共晶组织,共晶Mg_2Si依附初生Mg_2Si相生长而不形成汉字状Mg_2Si相;随着Si含量增加,Mg-9Al基体中Al含量逐渐增加,凝固行为也随之变化。  相似文献   

17.
《铸造技术》2016,(10):2067-2071
通过原位反应制备Mg_2Si增强Al基复合材料,研究熔体过热处理温度和保温时间对Mg_2Si/Al-Si复合材料组织与性能的影响,确定最佳的工艺参数。结果表明:在本实验条件下,熔体过热处理的最佳工艺为820℃保温30 min,初生Mg_2Si接近于球状,平均晶粒尺寸为17μm,共晶Si由粗大的枝晶状变成细小的颗粒状,共晶Mg_2Si由汉字状变成短棒状,分布较均匀。未进行保温处理时,初生Mg_2Si的晶粒尺寸随着过热温度的提高而减小;过热温度低于870℃时,初生Mg_2Si的晶粒尺寸随保温时间的延长而减小;过热温度高于870℃时,初生Mg_2Si晶粒尺寸随保温时间的延长而急剧增大。  相似文献   

18.
研究了未处理、P和La合金化处理、超声处理和超声-合金化复合处理对Al-20Mg_2Si合金凝固组织和力学性能的影响,并研究了复合处理条件下不同的超声参数对初生Mg_2Si相大小和力学性能的影响。结果表明,经过超声-合金化复合处理后,合金的凝固组织和力学性能显著改善,其效果好于单一的合金化处理或超声处理;与未处理试样相比,初生Mg_2Si相的尺寸减小68%,抗拉强度提高62.3%,伸长率提高47%。复合处理条件下,随着超声功率的增加,初生Mg_2Si相尺寸逐渐减小,力学性能逐步提高;随着处理时间延长,初生Mg_2Si相尺寸先减小再增加,但力学性能逐渐提高;随着超声处理温度的提高,初生Mg_2Si相尺寸先减小后增加,力学性能变化规律与之对应。  相似文献   

19.
《铸造技术》2016,(8):1562-1566
采用重力铸造法制备Mg-8Al-8Zn-xSi(x=1,2,4,质量分数)镁合金。研究了不同Si含量对合金显微组织及室温和高温(150℃)力学性能的影响。结果表明:合金主要由α-Mg基体、β-Mg_(17)Al_(12)、Mg_2Si和MgZn相组成。随着Si含量的增加,Mg_2Si颗粒由汉字状逐渐转变为粗大的骨骼状。Si含量从1%增加到2%和4%时,Mg_2Si颗粒的平均尺寸由25μm分别增大到30μm和150μm;合金的硬度逐渐提高;其室温及高温抗拉强度、屈服强度和伸长率均呈现先提高后下降的趋势;室温及高温拉伸断裂形式为准解理脆性断裂。  相似文献   

20.
在高能超声场下利用熔体原位反应制备TiB2/Al-30Si复合材料;利用XRD、SEM及干磨损试验研究此复合材料的显微组织和磨损性能。结果表明:在高能超声场作用下,原位TiB2颗粒在铝基体中分布均匀,形貌为圆形或四边形,尺寸在0.1-1.5μm之间。初生硅的形貌为四边形,平均尺寸为10μm。随着高能超声功率的增加,Al-30Si基体合金及TiB2/Al-30Si复合材料的硬度明显提高;特别是当超声功率为1.2 kW时,复合材料的硬度达到412 MPa,是基体合金的1.3倍。复合材料的磨损性能得到明显提高,载荷的变化对复合材料的磨损量影响不大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号