首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用金相显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)、X射线衍射分析(XRD)和拉伸试验机等研究了一次淬火+回火和二次淬火+回火热处理对HSLA100钢显微组织与力学性能的影响。结果表明:热轧态HSLA100钢组织由粒状贝氏体和形状不规则M/A小岛组成;一次淬火后HSLA100钢中贝氏体呈现大致平行排列的板条状,内部可见高密度位错缠结形成的位错胞;热轧态HSLA100钢中奥氏体含量约为4.22%,900℃一次淬火后,奥氏体基本消失;HSLA100钢适宜的二次淬火温度为740~780℃时,二次淬火后进行500~560℃回火,HSLA100钢在具有较高强度和塑性的同时获得较低的屈强比,能够在获得较低屈强比(约0.86)的同时满足HSLA100钢拉伸性能的使用要求;900℃一次淬火+740℃二次淬火+560℃回火后HSLA100钢中弥散析出的纳米级ε-Cu相可以起到第二相强化作用,过高的回火温度会使得强化效果减弱。  相似文献   

2.
采用不同淬火和回火工艺,进行X100钢级管线用无缝钢管的系列热处理试验,研究淬火温度和回火温度对其组织性能的影响。试验结果表明:X100钢级管线用无缝钢管在930℃淬火时能够完全奥氏体化,并获得针状铁素体和板条贝氏体组织;随着回火温度的变化,试验管的组织和性能呈一定规律;采用930℃淬火+620℃回火热处理工艺,试验管可获得晶粒细小且分布均匀的针状铁素体,综合性能最佳。  相似文献   

3.
35CrMo钢亚温淬火强韧化组织与性能研究   总被引:2,自引:0,他引:2  
选用常规热处理、调质处理加亚温热处理两种工艺对35CrMo钢进行强韧化.结果表明:35CrMo钢经850℃淬火后获得马氏体组织,其硬度值较高,通过600℃回火后测其ak为117 J/cm2,σs为560 MPa,σb为765 MPa,硬度为32HRC,ψ=75%;35CrMo钢经850℃淬火+600℃回火+790℃淬火,其显微组织为铁素体+马氏体+弥散分布的细小残余奥氏体,硬度较高,再经600℃回火后组织为回火索氏体+铁素体,其ak为123 J/cm2,σs达到550 MPa、σb为755MPa,ψ达到76%,硬度为30 HRC.35CrMo钢经850℃淬火+600℃回火+790℃淬火+600℃回火工艺处理后.材料的强度和韧性具有良好的配合.  相似文献   

4.
研究了亚温淬火工艺和原始组织对一种新型射孔枪管用钢组织和性能的影响。结果表明,随亚温淬火温度升高,试验钢的晶粒增大,硬度呈先增大后降低的趋势;随回火温度升高,钢的硬度和强度逐渐降低,断面收缩率和冲击吸收能量逐渐增大;经分析最佳热处理工艺为840 ℃亚温淬火+560 ℃回火,以此工艺下处理后调质态试验钢的综合力学性能最优。  相似文献   

5.
采用Gleeble-3500热模拟机模拟X80级弯管焊接粗晶区实际焊接热过程,并通过硬度测试、夏比冲击试验、扫描电镜观察等分析方法对不同热煨工艺处理前后的X80级弯管焊接粗晶区力学性能和显微组织进行了研究。结果表明,X80级弯管焊接粗晶区组织主要以粗大的GB+BF为主,冲击功仅为67 J,焊接热循环高温热过程产生的粗大组织是导致焊接粗晶区低温韧性较差的主要原因。而在经过860℃淬火+550℃回火热煨处理后X80级弯管焊接粗晶区低温韧性得到显著改善,此时组织主要以细小的AF和BF板条为主,冲击功为201 J。弯管焊接粗晶区韧性改善主要得益于热煨过程中所产生的晶粒细化效应。因此,建议实际生产中选用860℃×10 min淬火+550℃×90 min回火作为X80级弯管热煨弯制的最佳工艺匹配。  相似文献   

6.
研究了热处理工艺对一种新型热作模具钢组织和性能的影响。结果表明:低于1100℃淬火,存在带状组织及偏析,硬度和磨损性能较低。1100℃淬火时,组织比较均匀,有较好的硬度和耐磨性。淬火温度升高到1150℃时,形成粗大的马氏体组织,硬度降低,磨损量增加。该热作模具钢经1100℃淬火后,在回火过程中,逐渐析出碳化物,析出的碳化物类型由渗碳体逐渐向合金碳化物转变,硬度和磨损抗力增加。当回火温度进一步升高时,合金碳化物尺寸逐渐增大,晶粒粗化,这些原因都导致该热作模具钢硬度下降,磨损量升高。该热作模具钢较佳的热处理工艺为:1100℃/油淬+2次560℃×2 h回火。  相似文献   

7.
研究了热处理工艺对M2高速钢组织和性能的影响。结果表明:M2高速钢淬火后的组织为淬火马氏体+残留奥氏体+大量碳化物;随着淬火温度的升高,M2钢淬火后残留奥氏体含量(质量分数)升高,经3次回火后残留奥氏体基本上完全消除,增加冷处理后残留奥氏体的含量相对于3次回火的要多,钢的强度和韧性得到改善。对比M2高速钢在不同热处理工艺条件下的组织和性能,最佳热处理工艺为850 ℃×30 min预热+1160 ℃×30 min淬火+(-65 ℃×1 h)冷处理+560 ℃×2 h回火3次。  相似文献   

8.
利用扫描电镜、金相显微镜、冲击试验机结合维氏硬度计研究了780、830和880℃淬火+500~580℃高温回火处理对Cr-Ni-Mo-V超高强韧钢显微组织和力学性能的影响。结果表明,随回火温度的升高,尺寸较大碳化物会发生溶解转变,合金碳化物由基体中不断弥散析出。硬度和冲击性能均随回火温度升高呈现先增大后降低的趋势,与碳化物弥散析出形貌和残留奥氏体分解转变有关;3种温度淬火试验钢均在540℃回火时出现二次硬化峰值,最高值分别为488、517、532 HV20,在540~560℃回火出现最大冲击吸收能量,分别为49.7、58.5、51.0 J。为充分保证钢的强韧性,最佳热处理工艺为830℃亚温临界淬火+560℃回火。  相似文献   

9.
以一种屈服强度为1100 MPa的高强度工程机械用钢为对象,研究了再加热淬火温度(880~980 ℃)和回火温度(200~650 ℃)对Q1100钢显微组织和力学性能的影响。结果表明,淬火温度从880 ℃升高至980 ℃,试验钢的平均奥氏体晶粒尺寸从8 μm增加到24 μm,试验钢的屈服强度和抗拉强度都呈先升高后降低的趋势,并在920 ℃时达到最大,而-40 ℃冲击性能则随之持续降低。试验钢经920 ℃淬火+200~650 ℃回火后,随着回火温度的提高,试验钢的马氏体板条合并,板条形貌逐渐模糊,碳化物数量和形貌也随之发生改变,强度大幅下降,塑性和韧性则先降低后升高。试验钢最佳的热处理工艺为920 ℃淬火+200~250 ℃回火。  相似文献   

10.
姜文超  刘志璞 《金属世界》2016,(4):67-69,80
文章介绍了本钢1100 MPa级高强度热轧调质钢的试制及热处理情况。本次试制采用200 kg真空感应炉和小型轧机进行冶炼与轧制,随后进行了不同回火温度的热处理实验。试制结果表明,经过热处理后钢材的组织均为回火马氏体+少量贝氏体,而且利用Cr、Ni、Mo、Nb、Ti、V等合金元素的强化作用,以及后续890℃淬火+200℃低温回火的热处理方式,可以使钢材在具有高屈服强度和抗拉强度的同时,又具有良好的冲击韧性和成形性,完全满足1100 MPa级高强度工程机械用钢的各项要求。  相似文献   

11.
对国外P92钢进行不同温度(1040、1060、1080 ℃)淬火和1060 ℃淬火+不同温度(740、760、780 ℃)、不同时间(1、3、5、7 h)的回火热处理,研究热处理参数对其显微组织、晶粒度及硬度的影响。结果表明,经淬火后P92钢组织为板条状马氏体+残留奥氏体,随淬火温度的升高,马氏体组织板条逐渐变粗大,平均晶粒度由9级增大至7级。P92钢经1060 ℃淬火后,随着回火温度的升高和回火时间的延长,P92钢硬度逐渐降低,回火马氏体板条逐渐合并并向回火索氏体过渡,且回火过程中碳化物在晶界和晶内析出并不断长大。  相似文献   

12.
利用金相检测、室温拉伸、硬度和冲击检测等方法,研究了不同热处理工艺对12Cr钢组织及性能的影响。结果表明,淬火温度对12Cr钢热处理后的晶粒度影响显著,随淬火温度的升高,12Cr钢的晶粒逐渐长大,而其冲击性能明显改善,硬度也明显提高;随回火温度的上升,12Cr钢的强度逐渐降低。当淬火温度上升到1160 ℃时,晶粒度粗达3级;当回火温度超过700 ℃时,12Cr钢的短时持久性能明显恶化;在1100 ℃淬火,680 ℃回火时,获得均匀的板条状马氏体组织,短时持久性能最佳。  相似文献   

13.
研究了40Cr钢在不同热处理工艺下的组织和摩擦性能。结果表明,40Cr钢经过正火+淬火+中温回火后,组织为回火屈氏体;经过正火+超高温淬火+低温回火处理后,组织为晶粒相对较小的回火马氏体;正火+亚温淬火+低温回火后,组织为晶粒细小的回火马氏体。三种的热处理工艺比较得出,经正火+亚温淬火+低温回火处理后马氏体的晶粒较小,硬度较高,耐磨擦性能最佳。  相似文献   

14.
研究不同热处理工艺对X70QS钢级酸性低温管线管微观组织和力学性能的影响。结果表明:淬火工艺对X70QS钢级酸性管线管的组织性能影响较大,随着淬火温度的升高,其贝氏体组织明显粗化,力学性能尤其是低温冲击性能下降明显;相同淬火温度时降低淬火冷却速度,会使铁素体组织逐渐增多并多边形化,强度明显不足。X70QS钢级酸性低温管线管经880~900℃淬火(水淬)+600℃回火后具有最佳的强度和低温韧性匹配。  相似文献   

15.
以淬火硬度、金相组织和晶粒度为评价尺度,确定CB80管线管的最佳热处理制度;利用透射电镜及EDS,对CB80管线管第二相粒子的形貌及成分进行分析。分析认为:淬火温度为1 020℃,回火温度在560~580℃时,CB80管线管的性能满足API Spec 5L—2012标准对X80QO钢级的要求,且具备较高的低温冲击性能;Nb、V、Ti在1 020℃时能充分溶解于奥氏体中,并在回火过程中析出,从而起到强化作用,提升钢管性能;调质态下的CB80管线管中析出物主要为NbC和少量的TiN;CB80调质样管的微观组织主要由回火马氏体板条以及析出物构成,回火后马氏体中的碳化物较少,位错密度不高。  相似文献   

16.
研究了奥氏体化温度对高层建筑用钢拉伸力学性能、-20℃冲击性能和显微组织的影响,分析了直接淬火+回火、一次淬火+回火和二次淬火+回火热处理这3种热处理工艺,并优化了试验钢的淬火+回火工艺。结果表明:试验钢在这3种热处理工艺下的抗拉强度、屈服强度、屈强比和-20℃冲击功都随着奥氏体化温度的升高呈现降低的趋势,采用一次淬火+回火或二次淬火+回火热处理可以显著降低试验钢的屈强比并提高冲击韧性,适宜的奥氏体化温度为900~1000℃;直接淬火+回火试样的金相组织为回火马氏体,一次淬火+回火和二次淬火+回火试样的金相组织都为回火马氏体+铁素体;同时,在马氏体板条界面和相界面处析出了尺寸不等的细小M23C6相。  相似文献   

17.
《热处理》2018,(5)
1080钢是一种含0.75~0.88%C的高碳钢。对1080钢锻件依次进行了正火+高温回火、球化退火和调质处理,随后测定了钢的力学性能和显微组织。试验结果表明:采用正火+回火+球化退火的预备热处理工艺是可行的,而调质的淬火采用从850℃空-水-空交替冷却的淬火方式可确保锻件不开裂,淬火后再将锻件在540℃和560℃回火随后水冷,结果的力学性达到了要求。  相似文献   

18.
通过中频真空感应炉冶炼了试验钢,采用箱式电阻炉进行了热处理试验,并分析了预处理、淬火、回火等不同热处理下的组织、硬度变化规律,探讨了淬火温度对试验钢最终组织和力学性能的影响。结果表明,试验钢预处理后的组织为高温回火马氏体+弥散的第二相,组织均匀细化,晶界连续的网状组织完全消除。淬火组织为板条马氏体+残余奥氏体,硬度较高;回火组织主要为回火马氏体+少量残余奥氏体,马氏体板条较为明显,硬度下降。随淬火温度提高,回火组织中回火马氏体板条更为细小化,残余奥氏体含量略有增加;试验钢淬火态、回火态硬度均提高;冲击功先略有降低,当淬火温度超过1040℃时又提高。  相似文献   

19.
研究了不同热处理工艺对TQ1热作模具钢的组织及性能的影响,并与国产H13钢进行了对比。结果表明,经1020℃淬火,TQ1钢硬度能达到56.8 HRC,晶粒度可达8级;在500℃回火3次后,具有明显的二次硬化效应,回火硬度达到52.5 HRC;TQ1热作模具钢的最佳热处理工艺(1020℃淬火+500℃回火3次)能使其具有较高的硬度和比H13钢更细小均匀的显微组织。  相似文献   

20.
对国产75Cr1锯片钢进行800、840、860℃油淬再进行420、440、460℃回火处理试验。利用光学显微镜观察不同淬火温度下脱碳层形貌及淬火回火后的组织,分别用万能材料试验机、洛氏硬度仪测试材料的拉伸性能和硬度。结果表明,随淬火温度的增加脱碳层深度增加;经不同温度淬火+460℃回火,组织主要为回火屈氏体及部分颗粒状回火索氏体,但800℃时,组织还出现了一定量的非回火马氏体组织,硬度较低,在840℃淬火硬度最高。试验钢经840℃淬火后,随回火温度的增加,组织依次由回火马氏体转变到回火马氏体+回火屈氏体,再到回火索氏体,强度和硬度逐渐降低,塑性相应提高。国产75Cr1钢最佳热处理工艺为840℃(保温10 min)油淬+440℃(保温60 min)回火。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号